
Approximating E-Uni�cationChristopher Lynch �and Barbara MorawskaJanuary 26, 2001AbstractWe give a set of inference rules for solving E-uni�cation. We provethe completeness with Eager Merging for linear theories and goals with norepeated variables. If the theory is further restricted to have no repeatedvariables, we show that E-uni�cation is decidable and has linear complex-ity when the theory is considered constant, and cubic when it is part ofthe input. For any E-uni�cation problem, equations can be transformedinto this class and the problem can be quickly approximated.1 IntroductionEquational logic commonly arises in deductive problems. A particularly impor-tant problem is to decide whether there is a substitution that makes a givengoal true in an equational theory, or to �nd a set of substitutions that willgenerate all possible solutions. This it the problem of E-uni�cation[1]. Theproblem arises in automated deduction, formal veri�cation, type inference andmany other areas of computer science. Often deductions are performed moduloa given equational theory, and calls to an E-uni�cation procedure are madeconstantly through a deductive process.Unfortunately, E-uni�cation is undecidable in general, even for the problemof only deciding whether a solution exists. However, even when it is decidable, itmay have very high complexity. Therefore, it would be useful to have some wayof reducing the number of calls to the procedure. One way of doing this wouldbe to approximate E-uni�cation. By this we mean to use an e�cient algorithmfor deciding E-uni�cation that is complete but not sound. This means that ifit says that the E-uni�cation problem is not satis�able, then we can be sure ofthe answer. If it says it is satis�able, we must then run a sound E-uni�cationprocedure to determine if that answer is correct. A deductive procedure couldthen call the approximating algorithm before calling the real algorithm, andavoid many unnecessary calls to the real procedure.In this paper, we give such an approximating E-uni�cation algorithm. Therunning time of the algorithm is linear if the equational theory is considered�Department of Math and Computer Science, Clarkson University, Potsdam, NY 13699-5815. Phone: (315) 268-2384. Fax: (315) 268-2371. Email: clynch@clarkson.edu1



constant, and cubic if the equational theory is considered as part of the input.Our algorithm will approximate any E-uni�cation problem for any equationaltheory.What we exactly do in this paper is to show that E-uni�cation is decidablefor equational theories such that each equation has no repeated variables andthe goal has no repeated variables, with the complexity given above. This classof theories contains all ground equations, but it is larger than that. The theoryis not very interesting in its own right, but it is interesting for the purpose ofapproximating E-uni�cation.The way the approximation works is to take each equation in the goal andthe equational theory and rename the variables so that no variable occurs morethan once. If this new E-uni�cation problem is unsatis�able, then the originalone is also.In order to create the decision procedure, we �rst create a sound and com-plete goal-directed inference procedure for the case where the equational theoryis linear and the goal contains no repeated variables. The inference rules givenfor this procedure are similar to the inference rules for Syntactic Theories[4, 6, 7],but in our case we do not require that the theory is syntactic. An interestingfeature of this inference system is that we can prove the completeness withEager Merging. The problem of proving completeness with Eager Merging (orEager Variable Elimination) is an open problem for many goal-directed infer-ence systems[2, 3, 5]. Since so little is known about it, it is interesting to havea completeness result with Eager merging, even for such a restricted inferencesystem. It is di�cult to create goal-directed inference systems for equationaltheories. However, we believe they are useful for directing the search for anE-uni�er. We have created a related goal-directed inference system in [8]. Thatsystem is complete for all equational theories, however it has more rules anddoes not have Eager Merging.In the conclusion of the paper, we show that our approximation technique isnot only useful for E-uni�cation. It is also useful for Logic Programming, wherewe must decide if there is a substitution that can be applied to the goal so thatthe goal follows from the given Horn Clauses. We get similar nice complexityresults for this case. Our techniques have some similarities to what is done forLocal Theories[10], but they are only concerned with universal goals, and wecan cover existential goals.The format of the paper is as follows: After some preliminary de�nitions,we give the inference rules and a soundness and completeness result with EagerMerging. After that, we give the algorithm for the restricted case with norepeated variables and give our complexity results. To conclude, we talk aboutthe relationship with approximation and with Local Theories. Some missingproofs will appear in a longer version of the paper[9].In the introduction, we will �rst talk about why E uni�cation is an importantproblem. We will give an informal de�nition of deciding uni�cation, solvinguni�cation, and deciding the word problem. We will talk about goal directedinference systems and why they are important. We will talk about how we wantto have decision procedures for some classes of theories. And we will give an2



idea of the results we get in this paper.2 PreliminariesWe assume we are given a set of variables and a set of uninterpreted functionsymbols of various arities. An arity is a non-negative integer. Terms are de�nedrecursively in the following way: each variable is a term, and if t1; � � � ; tn areterms, and f is of arity n � 0, then f(t1; � � � ; tn) is a term, and f is the symbolat the root of f(t1; � � � ; tn). A term (or any object) without variables is calledground. We consider equations of the form s � t, where s and t are terms. LetE be a set of equations, and u � v be an equation, then we write E j= u � v(or u =E v) if u � v is true in any model of E. If G is a set of equations, thenE j= G means that E j= e for all e in G.A substitution is a mapping from the set of variables to the set of terms,such that it is almost everywhere the identity. We identify a substitution withits homomorphic extension. If � is a substitution then Dom(�) = fx j x� 6= xg.A substitution � is an E-uni�er of an equation u � v if E j= u� � v�. � is anE-uni�er of a set of equations G if � is an E-uni�er of all equations in G.If � and � are substitutions, then we write � �E �[V ar(G)] if there is asubstitution � such that E j= x�� � x� for all x appearing in G. If G is a setof equations, then a substitution � is a most general uni�er of G, written � =mgu(G) if � is an E uni�er of G, and for all E uni�ers � of G, � �E �[V ar(G)].A complete set of E-uni�ers of G, is a set of E-uni�ers � of G such that for allE-uni�ers � of G, there is a � in � such that � �E �[V ar(G)].Given a uni�cation problem we can either solve the uni�cation problem ordecide the uni�cation problem. Given a goal G and a set of equations E, tosolve the uni�cation problem means to �nd a complete set of E-uni�ers of G.To decide the uni�cation problem simply means to answer true or false as towhether G has an E-uni�er. In this paper, we consider both of these problems.We say that a term t (or an equation or a set of equations) has varity n ifeach variable in t appears at most n times. An equation s � t is linear if sand t are both of varity 1. Note that the equation s � t is then of varity 2,but it might not be of varity 1. A set of equations is linear if each equation inthe set is linear. For example, the axioms of group theory (ff(x; ; f(y; z)) �f(f(x; y); z); f(w; e) � w; f(u; i(u)) � e. are of varity 2.Let G be a set of equations. We de�ne an equation graph of G by lettingthe equations of G be the nodes, and placing an edge from an equation e1 toan equation e2 if there is an occurrence of a variable x in e1 and a di�erentoccurrence of x in e2. For example if G = ff(x) � g(x); f(y) � g(z); f(z) �g(y)g, then there is an edge from f(x) � g(x) to itself, since there are twooccurrences of x in f(x) � g(x). Also, there are two edges between f(y) � g(z)and f(z) � g(y), because two di�erent variables occur in both equations. Pathsand cycles are de�ned as usual. In the above example, we have described twodi�erent cycles. A set of equations G is de�ned to be cyclic if the equationgraph of G has a cycle. 3



3 Inference RulesIn this section, we will give a set of inference rules for �nding a complete set ofE-uni�ers of a goal G, and in the following sections we prove that for a linearequational theory E, every goal G of varity 1 and substitution � such thatE j= G� can be converted into a normal form which determines a substitutionwhich is more general than �. The inference rules decompose an equationalproof by choosing a potential step in the proof and leaving what is remainingwhen that step is removed.An equation x � t appearing in G where x only appears once in G is calledsolved. We de�ne the unsolved part of G to be the set of all equations in G thatare not solved.As in Logic Programming, we can have a selection rule for goals. For eachgoal G, we don't-care nondeterministically select an equation u � v from G,such that u and v are not variables. We say that u � v is selected in G. If thereis no such equation u � v in the goal, then nothing is selected. We will see inthe next section that if nothing is selected, then the goal is in normal form anda most general E-uni�er can be easily determined.The inference rules are given in �gure 1. Except for Mutate, these are theusual inference rules for syntactic uni�cation. Notice that Orientation is notallowed in the case of variable-variable equations. We want to avoid in�niteloops in such cases.The Mutate rule is so-called because it is similar to the inference rule Mutatethat is used in the inference procedure for syntactic theories[4]. The rule assumesthat there is an equational proof of the goal equation at the root of the equation.If one of the equations in this proof is s � t then that breaks up the proof atthe root into two separate parts.The Mutate Rule for Syntactic Theories performs a Decomposition on u � sand v � t immediately after the Mutate rule. However, that is only complete forSyntactic Theories. Our inference procedure is not just for syntactic theories,and such a rule is not complete in our case. Our inference system would becomplete if we allowed an immediate Decomposition on v � t but not u � s.This is proved in our full paper[9]. However, for the complexity results we needfor this paper, we don't need the immediate Decomposition, so we will use thesimpler version for this paper.We will write G �! G0 to indicate that G goes to G0 by one application ofan inference rule. Then ��! is the reexive, transitive closure of �!.We want our inference rules to be applied deterministically or don't-carenondeterministically whenever possible. Therefore, we restrict the applicationof our inference rules in the following way:Assume that Trivial, Orient and Merge are performed eagerly whenever ap-plicable. It is usual in inference systems for the Trivial and Orient rules to beperformed eagerly. However, it is an open question in many inference systemswhether the Merge rule can be applied eagerly. Since we restrict our infer-ence rules to the case where E is linear and G is of varity 1, we can prove thecompleteness when Merge is performed eagerly. Eager inferences are a form of4



Decomposition:ff(s1; � � � ; sn) � f(t1; � � � ; tn)g [Gfs1 � t1; � � � ; sn � tng [GMutate: fu � vg [Gfu � s; t � vg [G where s � t 2 E. aMerge: fx � s; x � tg [Gfx � s; s � tg [GOrient: ft � xg [Gfx � tg [G where t is not a variable.Trivial: ft � tg [GGaFor simplicity, we assume that E is closed under symmetry.Figure 1: The inference rules
5



determinism, because when inferences are performed eagerly, that means thatthere is no need to backtrack and try other rules.For the Decomposition and Mutate rules, we will assume that they mustbe performed on a selected equation. That is a source of don't-care non-determinism in our procedure. However, there are still some sources of don't-know nondeterminism. If Decomposition and Mutate are both applicable to theselected equation, we don't know which one to do, and therefore have to trythem both. Similarly, there may be more than one equation we can use in orderto perform Mutate on the selected equation. In that case, we must also try allthe possibilities.We will prove that the above inference rules solve a goal G by transformingit into normal forms representing a complete set of E-uni�ers of G.4 Normal FormIn order for the �nal result of the procedure to determine a uni�er, it must notbe cyclic. We will consider a goal G of varity 1 and a set of linear equations.Since G is of varity 1, it is not cyclic. We need to show that that property ispreserved. Also, since G is of varity 1, it is trivially of varity 2. We prove thatthat property is preserved.Lemma 1 Assume the unsolved part of G is of varity 2 and E is linear. IfG ��! G0, then the unsolved part of G0 is of varity 2.Lemma 2 Suppose that E is linear and G is not cyclic. If G ��! H, then His not cyclic.Corollary 1 Suppose that E is linear and G has varity 1. If G ��! H, then His not cyclic.A goal G is in normal form if the equations of G are all of the form x � t,where x is a variable, and the equations of G can be arranged in the formfx1 � t1; � � � ; xn � tng such that for all i � j, xi is not in tj . Then de�ne �Gto be the substitution [x1 7! t1][x2 7! t2] � � � [xn 7! tn]. �G is a most generalE-uni�er of G. Notice that if a noncyclic goal has no selected equation, thenthe goal is in normal form, since Merge is applied eagerly.5 SoundnessTheorem 1 The procedure in Figure 1 is sound, i.e. if G0 ��! G and G is innormal form, then E j= G0�G.6 A Bottom Up Inference SystemIn order to prove the completeness of this procedure, we �rst de�ne an equationalproof using Congruence and Equation Application rules. We prove that this6



equational proof is equivalent to the usual de�nition of equational proof, whichinvolves Reexivity, Symmetry, Transitivity and Congruence.We will de�ne completeness with respect to any equational theory obtainedby the following rules of inference from a set of equations closed under symmetry:Congruence: s1 � t1 � � � sn � tnf(s1; � � � ; sn) � f(t1; � � � ; tn)Equation Application: u � s t � vu � v ;if s � t is a ground instance of an equation in E.For Congruence n � 0. In the special case where n = 0, f is a constant.We de�ne E ` u � v if there is a proof of u � v using the Congruence andEquation Application rules. If � is a proof, then j�j is the number of steps inthe proof. ju � vjE is the number of steps in the shortest proof of u � v.We need to prove that fu � v jE ` u � vg is closed under Reexivity,Symmetry and Transitivity. First we prove Reexivity.Lemma 3 Let E be an equational theory. Then E ` u � u for all u.Next we prove closure under symmetry.Lemma 4 Let E be an equational theory such that E ` u � v and ju � vjE = n.Then E ` v � u, and jv � ujE = n.Next we show closure under Transitivity.Lemma 5 Let E be an equational theory such that E ` s � t and E ` t � u.Suppose that js � tjE = m and jt � ujE = n. Then E ` s � u, and js � ujE �m+ n.Closure under Congruence is trivial. Now we put these lemmas together toshow that anything true under the semantic de�nition of Equality is also trueunder the syntactic de�nition given here.Theorem 2 If E j= u � v, then E ` u � v.7 CompletenessNow we come to the completeness of the inference rules given in Figure 1, whereE is linear, and G is of varity 1.First we de�ne a measure on the equations in the goal, which will be usedin the completeness proof.
7



De�nition 1 Let E be an equational theory and G be a goal. Let � be a substi-tution such that E j= G�. We will de�ne a measure �, parameterized by � andG. De�ne �(G; �) to be the triple (m;n; p), where m is the sum of all ju� � v�jE ,where u � v is an unsolved equation of G, n is the number of unsolved equationsin G, and p is the number of equations of the form t � x, where x is a variableand t is not. We will compare these triples lexicographically.Now we come to the completeness theorem:Theorem 3 Suppose that E is an equational theory, G is a set of goal equations,E is linear, G is of varity 2, the unsolved part of G is not cyclic, and � is aground substitution. If E j= G� then there exists a goal H such that G ��! Hand �H �E �[V ar(G)].Proof. Let G be a set of goal equations, and � a ground substitution such thatE j= G�. Let �(< G; � >) = M . We will prove by induction on M that thereexists a goal H such that G ��! H and �H �E �[V ar(G)]. In addition wewill prove that if a Merge, Orient or Trivial rule is applicable to G, and if theapplication of that rule yields G0, then there exists a goal H such that G0 ��! Hand �H �E �[V ar(G)].If nothing is selected in G, then G must be in normal form, and �G is themost general uni�er of G, so �G �E �[V ar(G)].Now suppose that one of the eager rules applies to an equation in E, resultingin G0. We need to show that there is an extension �0 of � such that E j= G0�0,and �(G0; �0) < �(G; �). Then by the induction assumption there is an H suchthat G0 ��! H with �H �E �0[V ar(G0)]. This implies that G ��! H and�H �E �[V ar(G)].Case 1: Suppose that Merge is Applicable. So G = fu � s; u � tg [ G1,where u is a variable. Then Merge is eagerly applied, and the new goal,G0 = fu � s; s � tg [ G1, where u � s is solved. By lemmas 4 and 5js� � t�jE � ju� � s�jE + ju� � t�jE . Hence the �rst component of themeasure, �(G0; �) will either stay the same as �(G; �) or will decrease. Inboth cases the number of unsolved equations will decrease at least by 1,hence �(G0; �) < �(G; �). Also, by symmetry and transitivity, E j= G0�.Case 2: If Orient is applicable, then G is of the form ft � xg [ G1. Anapplication of Orient decreases the measure �, because although its �rstcomponent remains the same, the second one may get decreased, and evenif it stays the same the third component is decreased by 1. It also yieldsan equivalent set of equations, so � is still an E-uni�er.Case 3: If Trivial is applied, the measure gets decreased in the �rst component,and � is still an E-uni�er.If some equation is selected in G, we will prove that there is a goal G0 anda extension �0 of � such that E j= G0�0, G �! G0, and �(G0; �0) < �(G; �).8



Then by the induction assumption there is an H such that G0 ��! H with�H �E �0[V ar(G0)]. This implies that G ��! H and �H �E �[V ar(G)].So assume that some equation u � v is selected in G. Then G is of the formfu � vg [G1. Neither u nor v is a variable, since u � v is selected.Consider the rule used at the root of the proof tree that E ` u� � v�. Thiswas either an application of Congruence or Equation Application.Case 1: Suppose the rule at the root of the proof tree of E ` u� � v� is anEquation Application. Then there exists a ground instance s�0 � t�0 ofan equation s � t in E, such that E ` u�0 � s�0 and E ` t�0 � v�0, where�0 is an extension of � such that s�0 = t�0. Let ju�0 � s�0jE = p. Letjt�0 � v�0jE = q. Then ju� � v�jE = p+ q + 1....u� � s�0 ...t�0 � v�u� � v�There is an application of Mutate that can be applied to u � v, resultingin the new goal G0 = fu � s; t � vg [G1....fu � vg [G1fu � s; t � vg [G1Then ju�0 � s�0jE = p, and jt�0 � v�0jE = q, and p + q < ju� � v�jE =p+ q + 1. so �(G0; �0) < �(G; �). Note that �0 is an E-uni�er of G0.Case 2 Now suppose that the rule at the root of the proof tree of E ` u� � v�is an application of Congruence.Then u = f(u1; � � � ; un), v = f(v1; � � � ; vn) and E ` ui� � vi� for all i....u1� � u1� � � � ...vn� � vn�f(u1; � � � ; un)� � f(v1; � � � ; vn)�There is an application of Decomposition that can be applied to u � v,resulting in the new goal G0 = fu1 � v1; � � � ; un � vng [ G1. Then�1�i�njui� � vi�jE < ju� � v�jE = �1�i�njui� � vi�jE+1, so �(G0; �) <�(G; �). Note that �0 is an E-uni�er of G0.utCorollary 2 Suppose that E is an equational theory, G is a set of goal equa-tions, E is linear, G is of varity 1, and � is a ground substitution. If E j= G�then there exists a goal H such that G ��! H and �H �E �[V ar(G)].9



8 Decidability and Complexity of Varity 1In this section, we will assume that E and G both have varity 1. We will give analgorithm to decide the E-uni�cation problem, but we will not �nd a completeset of uni�ers.Since E and G have varity 1, the inference rules in Figure 1 are completeby Theorem 3. In addition we give an algorithm to decide the E-uni�cationproblem in time O((jGj + jEj)� jEj � n), where jGj is the size of G, jEj is thesize of E, and n is the number of equations in E.The algorithm for this is presented in �gure 2. Given a goal G the functionvisit is called on each equation e in G. If it returns T , then e is E-uni�able. Ifit returns F , then e is not E-uni�able. If it returns T for all of the equations inG, then G is E-uni�able. This is because no two equations share variables.The function visit �rst returns T if e is a variable term pair or a trivialequation. Otherwise visit creates a list of lists of equations. Each such listconsists of the equations that can be derived from e with the applicable rules ofthe top-down inference system. For example, suppose that we call visit(fgfx �fggy), where E = fffw � fgzg.1 Then the list that is created for e is thefollowing: ((fgfx � ffw; fgz � fggy)(fgfx � fgz; ffw � fgfx)(gfx �ggy)). This is a list containing three lists. Each of the �rst two lists is the resultof a Mutate inference. The third list is the result of a Decomposition. Each listwill always contain two equations in the case of Mutate, and for Decompositionthe number of equations will be equal to the arity of the function symbol at theroot of the two sides of the equation. If there are n equations in E, then thenumber of such lists is at most 2n+ 1.Each equation in each list is a subproblem to be solved, and if one wholelist becomes true, then e is also true. visit then attempts to solve each of thosesubproblems e0. If e0 is not already in the process of being solved, it is visited.If e0 has already been visited. Then it may have already been solved.If e0 has not been solved yet, then T will not be returned from the function.In that case, it may be that e0 is not true. But it also may be that e0 is stillin the process of being solved. We set a pointer from the node e0 to this list.This pointer is called a back-edge, because it is similar to the back-edge from thedepth-�rst search algorithm. If e0 is ever proved true, then the update functionwill eventually follow this back-edge and handle the consequences.If e0 has already been solved, or if the call to visit(e0) returns T then thefunction update is called to deal with the consequence. The �rst thing updatedoes is to remove e0 from the list, since it is solved. If the list is now empty, thene has been proved true, and we follow back-edges and call update recursively.The update procedure is essential for the e�ciency of visit.Proposition 1 If G is of varity 1, then Merge does not apply to G.Lemma 6 Assume G and E are of varity 1. If G ��! G0, then G0 is of varity1. 1We assume E is closed under symmetry, so fgz � ffw is also assumed to be in E.10



function visit(e)if one side of e is a variablereturn Tif e is of the form t � treturn Tcreate list for efor each L in listfor each e0 in Lif e0-list existsanswer := e0-listelseanswer := visit(e0)if answer = Tsolved = update(e0; L; e)if solved = Treturn Telseset back edge from node e0 to Lreturn F // but maybe we have just not solved it yetfunction update(e0; L; e)remove e0 from Lif L is emptyset e-list to T // this removes associated back edgesfor each back edge from e to L0 in e00-listupdate(e; L0; e00)return Telsereturn F
Figure 2: Algorithm
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Since Merge will never apply in our derivations, we can view a derivationof a goal equations as a tree. Such a tree is a top-down proof that a goal isE-uni�able. It also gives us an E-uni�er, but we will not be concerned whatthe E-uni�er is, only its existence. The next lemma tells us that any goal thatis E-uni�able has a top-down proof such that no equation is a renaming of andescendant of itself. The reason for this is because we could then replace theancestor with a renaming of the subtree rooted by the descendant and get a newtop-down proof for the goal. The new proof might give a di�erent E-uni�er,but it would still be an E-uni�er.Lemma 7 If E j= e, then there is a top-down proof that e is E-uni�able, suchthat no equation is a descendant of a renaming of itself.Theorem 4 (Soundness/Completeness) Let E be a set of equations and e bean equation, both of varity 1. Then there exists an E-uni�er of e if and only ifvisit(e) = T .Proof. If visit(e) = T , then that gives a top-down proof that e is E-uni�able.We need to prove the other direction. So assume that e is E-uni�able. We needto prove that visit(e) = T . The proof is by induction on the size of the top-downproof that e is E-uni�able.Case 1 Assume that in the top-down proof, the Mutate rule was applied to anequation e, i.e. e is u � v, and the proof is of the following form:...u � vu � s... t � v...where s � t 2 E.visit(u � v) will initialize a list of consequences for u � v, and L =(u � s; t � v) will be one of its elements, as a consequence of the Mutaterule. The algorithm will proceed with checking each list in the list ofconsequences and either it �nds the proof earlier (we are done) or it willeventually check the list L. By the induction hypothesis, visit(u � s) = Tand visit(t � v) = T , because both equations have shorter proofs. Butthere are 2 cases here (we will consider them for u � s only, for t � v thecases are the same):1. u � s has already been visited and the list for it was initiated. Thenthe list can be equal to T or not yet.2. u � s has not yet been visited.In the �rst case, visit(u � v) will not call visit(u � s). If the list for u � sis equal to T, the equation is erased from the list L, and we are done. If12



the list is not equal to T, it means that visit(u � s) was already called inthe run of the algorithm, but didn't �nish. Then a back-edge is createdfrom u � s to the list L. We know by the inductive assumption thateventually visit(u � s) will return T, and the equation will be removedfrom L by the update function.The second case is similar to the �rst. By the induction argument weknow, that visit(u � s) will return T.The same applies for t � v.When the second equation becomes T, the list L will be empty, and thefunction visit will then return T.Case 2 Assume that in the top-down proof the Decomposition rule was appliedto an equation e, i.e. e = f(u1; � � � ; un) � f(v1; � � � ; vn), and the proof isof the form: ...f(u1; � � � ; un) � f(v1; � � � ; vn)u1 � v1; � � � ; un � vnThe argument here is similar to the argument in Case 1.utThe complexity argument relies on the fact that only certain equations willbe created by the algorithm.Lemma 8 Assume that e ��! G0. Then for every s � t 2 G0, either1. s � t is obtained by a sequence of Decompositions of e, or2. s is a renaming of a subterm of a term appearing in E [ feg and t is arenaming of a subterm of a term appearing in E (or vice versa).Theorem 5 visit(e) has complexity O((jej + jEj) � jEj � n), where n is thenumber of equations in E.Proof. First we will proof that there are only O(jej+ jEj)� jEj) possible equa-tions in the proof.It follows from Lemma 8 that we can bound the number of possible equations:1. the equations obtained by the Decomposition of the goal, e, hence jejequations;2. the equations of the form s � t, where s is a subterm of E [ feg and t isa subterm of jEj, hence (jej+ jEj)� jEj equations.13



For each equation the algorithm initializes a list of equations, that in theworst case, can be length 2n+ 1.Hence, there will be only O((jej + jEj) � jEj � n) equations in the listsinitialized during the run of the algorithm in the worst case.Now, when visit is called on the goal, e, it may go on to create all possibleequations in the worst case, i.e. O(jej + jEj) � jEj) equations. (visit is calledonly once on each equation.) For each of them it can go through the list of O(n)equations, hence overall visit can take O((jGj + jEj)� jEj � n) time.We must also consider the time for update. update in the worst case mayremove all the equations from all the lists, i.e. it will take O((jGj+jEj)�jEj�n)time. utIf we want to decide whether a goal G is E-uni�able, and we consider Gto be the input to the algorithm, then we can consider jEj as a constant, andthe running time is linear in the size of the input. However, if the input to thealgorithm is considered to be both the goal G and the set of equations E, thenthe running time for the algorithm is cubic in the size of the input.9 ConclusionWe have given an inference procedure, similar to the inference procedure forSyntactic Theories[4, 6, 7], which gives a complete set of E-uni�ers for a linearequational theory with a goal with no repeated variables. We show it is completeeven with Eager Merging. The problem of Eager Merging is an open problemfor many inference systems[2, 3, 5].We also gave an algorithm for deciding E-uni�cation for theories and goalswith no repeated variables. The algorithm is linear if the equational theory isconsidered to be constant, and cubic if it is considered to be part of the input.The algorithm is useful for approximating any E-uni�cation problem. Sup-pose we want to decide if a goal G is E-uni�able. We then rename the variablesin E and G so that there are no repeated variables. Run the algorithm. If theanswer is NO, then the answer to the original problem is NO also. If the answeris YES, we must run an E-uni�cation procedure for the original problem.The same idea can be used to decide whether a goal is uni�able in a HornClause Theory. By the same techniques used in this paper, we can show that ifeach Horn Clause is such that no variable is repeated in the body, no variableis repeated in the head, and when a variable x appears in both the body andthe head, then if x appears in a term t in the body, t also must appear inthe head. If the goal has no repeated variables, then our techniques will showthat this problem is decidable and e�cient. This is similar to what is done inLocal Theories[10], except that we can decide existential problems, while LocalTheories only talk about universal problems.
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