Goal-Directed E-Unification

Christopher Lynch and Barbara Morawska

Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA, E-mail:
clynch@clarkson.edu,morawskb@clarkson.edu **

Abstract. We give a general goal directed method for solving the E-
unification problem. Our inference system is a generalization of the in-
ference rules for Syntactic Theories, except that our inference system is
proved complete for any equational theory. We also show how to easily
modify our inference system into a more restricted inference system for
Syntactic Theories, and show that our completeness techniques prove
completeness there also.

1 Introduction

E-unification [1] is a problem that arises in several areas of computer science,
including automated deduction, formal verification and type inference. The prob-
lem is, given an equational theory E and a goal equation u = v, to find the set of
all substitutions # such that uf and vf are identical modulo E. In practice, it is
not necessary to find all such substitution. We only need to find a set from which
all such substitutions can be generated, called a complete set of E-unifiers.

The decision version of E-unification (Does an E-unifier exist?) is an unde-
cidable problem, even for the simpler word problem which asks if all substitutions
will make uf and vf equivalent modulo E. However there are procedures which
are complete for the problem. Complete, in this sense, means that each E-unifier
will be generated eventually. However, because of the undecidability, the proce-
dure may continue to search for an E-unifier forever, when no E-unifier exists.

One of the most successful methods for solving the E-unification problem has
been Knuth-Bendix Completion[8]. This procedure deduces new equalities from
E. If the procedure ever halts, then it can solve the word problem. However,
because of the undecidability, Knuth-Bendix Completion cannot always halt.

Our goal in this paper is to develop an alternative E-unification procedure.
Why do we want an alternative to Knuth-Bendix Completion? There are several
reasons. First, there are simple equational theories for which Completion does
not halt. An example is the equational theory E = {f(f(x)) = g(f(x))}. So
then it is impossible to decide any word problem in this theory, even a simple
example like @ = b, which is obviously not true. Using our method, examples
like this will quickly halt and say there is no solution.

** This work was supported by NSF grant number CCR-9712388 .

A related deficiency of Completion is that it is difficult to identify classes of
equational theories where the procedure halts, and to analyze the complexity of
solving those classes. That is our main motivation for this line of research. We do
not pursue that subject in this paper, since we first need to develop a complete
inference system. That subject will be addressed soon in a follow-up paper.

Another aspect of Completion is that it is insensitive to the goal. It is possi-
ble to develop heuristics based on the goal, but problems like the example above
still exist, because of the insensitivity to the goal. The method we develop in this
paper is goal directed, in the sense that every inference step is a step backwards
from the goal, breaking the given goal into separate subgoals. Therefore we call
our method a goal directed inference system for equational reasoning. This qual-
ity of goal-directedness is especially important when combining an equational
inference system with another inference system. Most of the higher order in-
ference systems used for formal verification have been goal directed inference
systems. Even most inference systems for first order logic, like OTTER, are of-
ten run with a set of support strategy. For things like formal verification, we
need equality inference systems that can be added as submodules of previously
existing inference systems. We believe that the best method for achieving this is
to have a goal directed equality inference system.

We do not claim that our procedure is the first goal directed equational in-
ference system. Our inference system is similar to the inference system Syntactic
Mutation first developed by Claude Kirchner [4,6]. That inference system ap-
plies to a special class of equational theories called Syntactic Theories. In such
theories, any true equation has an equational proof with at most one step at the
root. The problem of determining if an equational theory is syntactic is undecid-
able[7]. In the Syntactic Mutation inference system, it is possible to determine
which inference rule to apply next by looking at the root symbols on the two
sides of a goal equation. This restricts which inference rules can be applied at
each point, and makes the inference system more efficient than a blind search.

Our inference system applies to every equational theory, rather than just
Syntactic Theories. Therefore, we cannot examine the root symbol at both sides
of a goal equation. However, we do prove that we may examine the root symbol
of one side of an equation to decide which inference rule to apply. Other than
that, our inference system is similar to Syntactic Mutation. We prove that our
inference system is complete. The Syntactic Mutation rules were never proved
to be complete. In [5], it is stated that there is a problem proving completeness
because the Variable Elimination rule (called “Replacement” there) does not
preserve the form of the proof. We think we effectively deal with that problem.

There is still an open problem of whether the Variable Elimination rule can
be applied eagerly. We have not solved that problem. But we have avoided those
problems as much as possible. The inefficiency of the procedure comes from cases
where one side of a goal equation is a variable. We prove that any equation where
both sides are variables may be ignored without losing completeness. We also
orient equations so that inference rules are applied to the nonvariable side of an
equation. This gives some of the advantages of Eager Variable Elimination.

Another goal directed equational inference procedure is the General Unifi-
cation Procedure developed by Gallier and Snyder[2,3]. Their method differs
in that the inference rules do not apply to the root of the terms in the goal
equation. It can apply underneath, and the unification is performed in a lazy
way. We think our method is easier to implement and may be more efficient.
We also think that in our method it will be simpler to find decidable classes of
equational theories. The Eager Variable Elimination problem was first presented
in this setting, and it has not been solved there either.

The format of the paper is to first give some preliminary definitions. Then
present our inference system. After a discussion of normal form, we present
soundness results. In order to prove completeness, we first give a bottom-up
method for deducing ground equations, then use that method to prove com-
pleteness of our goal-directed method. After that we show how our completeness
technique can be applied to Syntactic Theories to show completeness of a pro-
cedure similar to Syntactic Mutation. Finally, we conclude the paper.

2 Preliminaries

We assume we are given a set of variables and a set of uninterpreted function
symbols of various arities. An arity is a non-negative integer. Terms are defined
recursively in the following way: each variable is a term, and if ty,---,¢t, are
terms, and f is of arity n > 0, then f(¢1,---,t,) is a term, and f is the symbol
at the root of f(t1,---,tn). A term (or any object) without variables is called
ground. We consider equations of the form s =~ t, where s and ¢ are terms. Let
E be a set of equations, and u & v be an equation, then we write E = u & v (or
u =g v) if u & v is true in any model containing E. If G is a set of equations,
then E = G means that E = e for all e in G.

A substitution is a mapping from the set of variables to the set of terms,
such that it is almost everywhere the identity. We identity a substitution with
its homomorphic extension. If € is a substitution then Dom(6) = {z | 26 # z}.
A substitution 6 is an E-unifier of an equation u ~ v if E = uf = vf. 6 is an
E-unifier of a set of equations G if § is an E-unifier of all equations in G.

If 0 and 6 are substitutions, then we write 0 <p 0[Var(G)] if there is a
substitution p such that E |= zop =~ z6 for all x appearing in G. If G is a set
of equations, then a substitution 6 is a most general unifier of G, written 6 =
mgu(G) if 6 is an E unifier of G, and for all E unifiers o of G, 8 <p GOV Ar(QG)].
A complete set of E-unifiers of (G, is a set of E-unifiers @ of G such that for all
E-unifiers ¢ of G, there is a 6 in © such that § <g o[Var(G)].

3 The Goal Directed Inference Rules

In this section, we will give a set of inference rules for finding a complete set of
FE-unifiers of a goal GG, and in the following sections we prove that every goal
G and substitution 6 such that £ = GO can be converted into a normal form
which determines a substitution which is more general than 6. The inference

rules decompose an equational proof by choosing a potential step in the proof
and leaving what is remaining when that step is removed.

We define two special kinds of equations appearing in the goal G. An equation
of the form z = y where x and y are both variables is called a variable-variable
equation. An equation z = ¢ appearing in G where x only appears once in G is
called solved.

As in Logic Programming, we can have a selection rule for goals. For each
goal GG, we don’t-care nondeterministically select an equation v ~ v from G,
such that u &~ v is not a variable-variable equation and u = v is not solved. We
say that u ~ v is selected in G. If there is no such equation u =~ v in the goal,
then nothing is selected. We will prove that if nothing is selected, then the goal
is in normal form and a most general E unifier can be easily determined.

There is a Decomposition rule.

Decomposition
{f(slsn) zf(th'":tn)}UG
{Sl %tl,"',Sn %tn}UG

where f(s1,- -, 8n) & f(t1,---,t,) is selected in the goal.
This is just an application of the Congruence Axiom, in a goal-directed way.
If f is of arity O (a constant) then this is a goal-directed application of Reflexivity.
We additionally add a second inference rule that is applied when one side of
an equation is a variable.

Variable Decomposition

{o~ f(ty, - tn)} UG
{z =~ f(z1,--,z,)}U{z1 = t1, 2, R, UG [= f(zr,- -, 24)]

where z is a variable, and x & f(t1,---,t,) is selected in the goal.

This is similar to the Variable Elimination rule for syntactic equalities. It can
be considered a gradual form of Variable Elimination, since it is done one step
at a time.

Now we add a rule called Mutate. We call it Mutate, because it is very similar
to the inference rule Mutate that is used in the inference procedure for syntactic
theories. Mutate is a kind of goal-directed application of Transitivity, but only
transitivity steps involving equations from the theory.

Mutate
{’U,N f(’Ul,"',’Un)}UG

{u= sty ~v, - t, ® v, } UG

where u ~ f(vy, - ,v,) is selected in the goal, and s ~ f(t;, - -,t,) € E. 1
This rule assumes that there is an equational proof of the goal equation at

the root of the equation. If one of the equations in this proof is s &~ t then that

breaks up the proof at the root into two separate parts. We have performed a

! For simplicity, we assume that E is closed under symmetry.

Decomposition on one of the two equations that is created. Contrast this with
the procedure for Syntactic Theories[4] which allows a Decomposition on both of
the newly created equations. However, that procedure only works for Syntactic
Theories, whereas our procedure is complete for any equational theory.

Next we give a Mutate rule for the case when one side of the equation from
E is a variable.

Variable Mutate

{’Uz%f(’l}l,"',’l)n)}UG
{u= s}z flz1, -, zp)]U{z1 v, 2, RV, } UG

where s ~ x € E, z is a variable, and u & f(v1,- -, v,) is selected in the goal.

We will write G — G’ to indicate that G goes to G' by one application of
an inference rule. Then — is the reflexive, transitive closure of —.

When an inference is performed, we may eagerly reorient any new equations
in the goal. The way they are reoriented is don’t-care nondeterministic, except
that any equation of the form ¢ &~ x, where ¢ is not a variable and z is a variable,
must, be reoriented to z = t.

We will prove that the above inference rules solve a goal G by transforming it
into normal forms representing a complete set of E-unifiers of G. There are two
sources of non-determinism involved in the procedure defined by the inference
rules. The first is “don’t-care” non-determinism in deciding which equation to
select, and in deciding which way to orient equations with non-variable terms
on both sides. The second is “don’t-know” non-determinism in deciding which
rule to apply. Not all paths of inference steps will lead us to the normal form,
and we do not know beforehand which ones do.

4 Normal Form

Notice that there are no inference rules that apply to an equation = ~ y, where
z and y are both variables. In fact, such an equation can never be selected.
The reason is that so many inferences could possibly apply to variable-variable
pairs that we have designed the system to avoid them. That changes the usual
definition of normal form, and shows that inferences with variable-variable pairs
are unnecessary.

Let G be a goal of the form {z1 & t1, -+, xp X tn,y1 & 21, Ym & Zm},
where all z;, y; and z; are variables, the ¢; are not variables, and for all 7 and j,
1. T g tj,
2. z; #y; and
3. i 7é Zj.
Then G is said to be in normal form. Let 7¢ be the most general (syntactic)
unifier of y; = 21, -, Ym = 2m > and og be the substitution [1 1, Ty —

t,]. Then we will define 6 to be the substitution og7g.

2 Note that an mgu must exist, since, y1 = 21, -, Ym = zm are unifiable. Also note
that an mgu can be easily calculated using the syntactic unification procedure.

Proposition 1. A goal with nothing selected is in normal form.

Proof. Let G be a goal with nothing selected. Then all equations in G have a
variable on the left hand side. So G is of the form 1 ~ t1,- -, zn, = th,y1 &
21, Ym R Zpy. Since nothing is selected, each equation z; = t; must be solved.
So each z; appears only once in G. Therefore the three conditions of normal form
are satisfied. 0

Now we will prove that the substitution represented by a goal in normal form
is a most general E-unifier of that goal.

Lemma 1. Let G be a set of equations in normal form. Then g is a most
general E-unifier of G.

Proof. Let G be the goal {zy & t1, -, Tn R tn,y1 = 21, -, Ym & Zm |, such that
for all i and j, z; € t;, x; # y; and x; # 2. Let og = [z1 = t1, -, zp = t].
Let 7¢ = mgu(y1 = 21, , Ym = Zm)- Let 8¢ = ogTg. We will prove that g is

a most general E unifier of G.

Let ¢ and 7 be integers such that 1 <i <n and 1 < j < n. First we need to
show that 6 is a unifier of G, i.e. that z;0¢ = t;0¢ and y;0c =g 2;0c. In other
words, prove that z;0¢7¢ = tiogTe and yjoeTq =g z;0q7q- Since t;, y; and z;
are not in the domain of o, this is equivalent to t;7q = t;7q and y;7¢ =g 2;7a,
which is trivially true, since 7¢ is mgu of {y1 & z1, -, ym & zm }.

Next we need to show that 65 is more general than all other unifiers of G. So
let § be an F-unifier of G. In other words, z;0 =g t;0 and y;0 =g z;6. We need
to show that 8¢ <g 0[Var(G)]. In particular, we will show that G660 =g G6.

Then z;060 = x;06760 = titg0 =g t;0 =g x;0. The only step that needs
justification is the fact that t;7¢60 =g t;0. This can be verified by examining
the variables of #;. So let w be a variable in ¢;. If w & Dom(7g) then obviously
wref = wh. If w € Dom(7) then w is some yi. Note that yr70 = 210 =g yib.
So tiT(;e =E ti6.

Also, y;0c0 = yjoaral = yj1¢0 = 2;0 =g y;0. Similaarly z;0G0 = zjo0q7c0 =
z2;Tq0 = z;6. O

5 An Example

Here is an example of the procedure. (The selected equations are underlined.)

Ezample 1. Let E=Ey ={ffe~gfz}, G=Go={fgfy~ggfz}.
By rule Mutate applied to Gy we have

Gi1={fgfy~ ffa1, fe1 = gfz}.

After Decomposition,

Gy ={gfy~ fo1, fon = gfz}.

After Mutate,

Gz ={gfy~ gfra,m1 = fr2, fr1 = gfz}
After Decomposition is used 2 times on G3,

Gy ={y~m, 21 & fra, fr1 = gfz}.

Variable Decomposition:

Gs ={y mm,m1 = fw3,23 = w2, ffr3 = gfz}.
Mutate:

Gs = {y = 22,01 =~ fr3,23 ® T2, ffrz = ffry, fra = f2}.
2x Decomposition:

Gr ={y~mo,m1 = fr3,23 X 2,73 R 24, fr4 = f2}.
Decomposition:

Gs ={y~x0,21 = fT3,T3 X To, T3 X T4,T4 X 2}.

X

The extended 6’ that unifies the goal Gy is equal to: [1 — fzs]ly — 2,23 —
z,me — z,m4 — z|. 0" is equivalent on the variables of G to 6 equal to: [y — z].

Ezample 2. Let E = {ffz ~ gfa}, G = Go = {fgfa= ggfa}.
By rule Mutate applied to Gy we have
Gi={fgfa= ffx:, fx1 = gfa}.

After Decomposition,

G2 ={gfa = fr1, fr; =~ gfa}.

After Mutate,

Gs ={gfa~ gfzs,z1 =~ fxo, fr1 = gfa}

After Decomposition is used 2 times on G5,

Gs ={z2 ®a,r1 = fxo, fr; = gfa}.

Variable Decomposition:

G = {2 m a,z1 & fa, fr, =~ gfa}.

Variable Decomposition:

Gr={z2 ma,m = frz, 23~ a, ffrs ~gfa}.
Variable Decomposition:

Gs ={z2 ®a,r1 = fa,z3 2 a,ffa=x gfa}.
Mutate:

Gy ={zo~a,z1 = fa,z3 = a,ffa= ffzxs, fra = fa}.
2x Decomposition:

G ={ro~a,x = fa,z3 X a,z4 X a, frs & fa}.
Variable Decomposition:

Gio ={ra~a,x; =~ fa,x3 ¥ a,r4 = a, fa~ fa}.
2x decomposition deletes the last equation:

G ={zyma, 1 = fa,r3 ® a,z4 = a}.

Here is another example, when the equational theory E is not regular. It also
ilustrates the use of Variable Mutate rule.
Example 3. Let Ey = {z = gfr} and Go = {z1 =~ fgz:}.
By Variable Decomposition:
G1 ~ {.’131 ~ f.’l?z,.’l)g ~ gf’l?z}
By Variable Mutate:
Gy = {m = fro, 12 = 23, fr3 = fr2}.
By Decomposition:
G3 {331 ~f$272132 ~ I3, $3~$2}

6 Soundness

Theorem 1. The above procedure is sound, i.e. if G' —— G and G is in normal
form, then E |= G'0.

Proof. Assume that G' is in normal form. Then 6 unifies equations in G', as
shown in Lemma 1.
Now assume that E |= G116, and prove that E = G;116c.

Case 1. G;41 was obtained by Decomposition from G;. We know that E =
Gi+10¢, but then since E must be closed under congruence, E = G,0q.
Case 2. G;y1 = {z = f(t1,---,t,} U H and was obtained from G; by Variable
Decomposition. First we prove that [z — f(z1,---,z,)]0¢ and 6, are E-
equivalent. We justify this claim by considering a variable y If y # x, then
ylr = f(z1,---,z,)]0c = y0g. If y = z, then y[z — f(z1,---,2z,)]0c =
flz1,---,2,)06 =g 28q, since E = 20 ~ f(z1,---,z,)0c. Therefore
E = Hfg, since E |= H[x — f(x1, -, 2y)0c. We also need to show that
E E xbg =~ f(t1, -, tn)0. This is true, since 20 =g f(z1, -, z,)0c =k
flxr)z = f(z, s an)lfe =g f(t)z = f(or, -, m0)06 =F

f(tl s :tn)eG-

Case 3. G,y was obtained from G; by Mutate. In this case, E E ufg = sf
and s & f(t1,---,t,) € E. So, E = ubg ~ f(t1, --,tn)0c. We assume
that E |= t;0¢ =~ vifg, for all i € {1,---,n} and thus by congruence,
E E f(t1,-,tn)ba = f(v1,-,0,)0q, hence by traunsitivity, £ E ufg ~
flor, - 0n)0a.

Case 4. (G;;1 was obtained from G; by rule Variable Mutate. We know that
E E (um s)x — f(x1,--,2n)]0c. On the other hand s ~ z belongs to
the axiom schemas of E, and hence E = (s = z)[z — f(x1, -, 2,)]0q,
ie. E |= (s & f(z1,---,z,))[z = f(z1,---,2,)]0q, thus by transitivity,
E|= (u= flzi, - ,z,))[z = f(z1, -, 2,)]0c. This is equivalent to E =
(um f(x1,--,2n))0q, because there is no x in w nor in f(xy,---,x,). We
know that E = z; ~ v; for all i € {1,---,n}. Hence E |= f(z1, -, 2n) =
flui,---,vy), therefore by transitivity E = (u & f(v1,--+,vn))0G-

O

7 A Bottom Up Inference System

In order to prove the completeness of this procedure, we first define an equational
proof using Congruence and Equation Application rules. We prove that this
equational proof is equivalent to the usual definition of equational proof, which
involves Reflexivity, Symmetry, Transitivity and Congruence.

We will define completeness with respect to any equational theory obtained
by the following rules of inference from a set of equations closed under symmetry:

SRt sy, R,
f(slz"':sn)%f(th'":tn)

Congruence:

uRSs txwv
Equation Application:
u R

if s=t 1isa ground instance of an equation in FE.

We define E + u = v if there is a proof of u & v using the Congruence and
Equation Application rules. If 7 is a proof, then |r| is the number of steps in the
proof. |u & v|g is the number of steps in the shortest proof of u = v.

We need to prove that {u ~ v|E F u = v} is closed under Reflexivity,
Symmetry and Transitivity. First we prove Reflexivity.

Lemma 2. Let E be an equational theory. Then E + u & u for all u.

Proof. The prove is by induction on the size of u. If the size of u > 1, then
u = f(s1---s,) and we assume that for each j € {1,2,---,n} 3k;.|s; ~ s;|lg =
k;. Then by applying Congruence we have |u ~ u|p = X7 k; + 1. If the size
of u = 1, we apply Congruence over the empty set of assumptions and get the
desired reflexivity, |u ~ u|g = 1. O

Next we prove closure under symmetry.

Lemma 3. Let E be an equational theory such that E F u & v and |u = v|g = n.
Then Et+ v = u, and |v = ulg = n.

Proof. The argument is by induction on |u & v|g. There are 2 subcases, depend-
ing on whether u &~ v was obtained by Congruence or Equation Application:

1. u ~ v was obtained by Congruence, i.e. u = f(s1,---,$n) and v =
fltr, -+ ,tn), and |s1 & t1|p + -+ + |8y = tu|p = i — 1. But then, by the
inductive argument |t1 = s1|g+- -+ [ty & sp|p =i —1 also, and by Congruence
[f(t1,- - tn) = f(s1,-,80)|E =1, 16 v u|lp =i
2. u ~ v was obtained by Equation Application, i.e. there is s ~ t € E and
|u a2 s|g+]|t ~ v|g =i—1. By induction also |v & t|g +|s ~ u|g = i— 1. Because
E is closed under symmetry, by Equation Application we have |v & ulp =i. O

Next, we show closure under Transitivity.

Lemma 4. Let E be an equational theory such that EF s ~t and E+t ~ u.
Suppose that |s = t|g =m and |t x ulp =n. Then E+ s = u, and |s & u|g <
m +n.

Proof. The proof will be by induction on m + n, where m and n are the sizes
of the derivations for the assumptions of the desired transitivity step. We shall
divide the proof into cases:

1. Assume that both equations were obtained by Congruence. Then s & f(s1, -, sp),
ta f(t1, - -,ty) and u = f(uq,- -, u,). Then there are equations, such that:
‘81 ~ t1|E+...+|Sk ~ tk‘E =m—1, and |t1 ~ U1|E+...+|tk ~ uk|E =n—1.

s &t SE Nt t1 & uq it & up

Congr.
Tongr .f(817“'75k)%f(tlf":tk) f(t17“'7tk)%f(ula'“:uk)
rans.
f(Sl,"'7Sk)’m“./f(ul7"'7Uk)
By induction, |s; ~ wi|lg < |s; = ti|g + |t; &~ ui|g for each ¢ € {1,--- k}.
Hence, |s1 ~ ui|g + -+ |sk = ug|lp < (m — 1) + (n — 1). By Congruence
we have |f(s1, -+, 8n) & f(ur, - -u,)|g <m+n—1

2. Assume that one of the equations was not obtained by Congruence, e.g. the
first one. Then it had to appear due to the rule Equation Application.

where v & w is a ground instance of an equation in E and the final equation
is the desired effect of transitivity. Now we can remove this transitivity step
by moving it up in the derivation and then apply the inductive hypothesis.

Trans.

Eq.App.

SR U

If originally transitivity occurred at the step |s ~ t|g + |t &~ u|g in the
derivation, now transitivity occurs at the step |w &~ t|g + |t & u|g, which is
smaller, hence we can apply the inductive hypothesis.

a

Closure under Congruence is trivial. Now we put these lemmas together to
show that anything true under the semantic definition of Equality is also true
under the syntactic definition given here.

Theorem 2. If E |=u ~ v, then B+ u = v.

Proof. If s ® t € E, then by Lemma 2, E+ s & s and E F t =~ t. Applying
Equational Application says that E b s & t. Since we proved that {u ~ v | E F
u & v} is closed under reflexivity, symmetry, transitivity and congruence, it must
contain all the consequences of E. O

We can restrict our proofs to only certain kinds of proofs. In particular. If
the root step of a proof is an Equation Application, then we can show there is a
proof such that the proof step of the right child is not an Equation Application.

Congr.

Lemma 5. Let w be a proof of u = v in E, whose proof step at the root is
Equation Application, and whose proof step of the right child is also Equation
Application. Then there is a proof ©' of u ~ v in E such that the root of 7'
is Fquation Application but the proof step of the right child is Congruence, and
|| = |-

Proof. Let m be a proof of u &~ v in E such that the step at the top is Equation
Application, and the step at the right child is also Equation Application. We
will show that there is another proof 7’ of u &~ v in E such that |7'| = |x|, and
the size of the right subtree of 7' is smaller than the size of the right subtree of
7. So this proof is an induction on the size of the right subtree of the proof.

Suppose u & v is at the root of m and u & s labels the left child n;. Suppose
the right child ny is labeled with ¢ & v. Further suppose that the left child of
ny is labeled with ¢ =~ w; and the right child of ns is labeled with wy &~ v. Then
s &~ t and w; ~ w2 must be members of E.

m) T3
t =~ w; Wy R U
Eq. App.
n:U S ng:tN'U
Eq. App.
uv

Then we can let 7’ be the proof whose root is labeled with u ~ v, whose left
child ns is labeled with u ~ w;. Let the left child of n3 be labeled with u ~ s
and the right child of n3 be labeled with ¢ &~ w;. Also let the right child of the
root n4 be labeled with wy &~ v.

m T2 3

U RS t ~ w;
nz: U W1 nag: W1 U

Eq. App.

Eq. App.

U=

8 Completeness of the Goal-Directed Inference System

Now we finally get to the main theorem of this paper, which is the completeness
of the inference rules given in section 3. But first we need to define a measure
on the equations in the goal.

Definition 1. Let E be an equational theory and G be a goal. Let 6 be a substi-
tution such that E = GO. We will define a measure u, parameterized by 6 and
G. Define u(G,) as the multiset {|uf ~ v0|k | u = v is an unsolved equation in

G}.

The intension of the definition is that the measure of an equation in a goal is
the number of steps it takes to prove that equation. However, solved equations
are ignored.

Now, finally, the completeness theorem:

Theorem 3. Suppose that E is an equational theory, G is a set of goal equa-
tions, and 0 is a ground substitution. If E = GO then there exists a goal H such

that G = H and 0y <pg 0[Var(Q)].

Proof. Let G be a set of goal equations, and 6 a ground substitution such that
E = GH. Let u(< G,0 >) = M. We will prove by induction on M that there
exists a goal H such that G — H and g <g 0[Var(G))].

If nothing is selected in GG, then G must be in normal form, by Proposition
1. By Lemma 1, 6 is the most general unifier of G, so g <pg 0[Var(G)].

If some equation is selected in G, we will prove that there is a goal G' and a
substitution 6’ such that G — G', §' <g [V ar(G)], and u(G',6") < u(G,6).

So assume that some equation u & v is selected in GG. Then G is of the form
{u = v} UG;. We assume that v is not a variable, because any term-variable
equation ¢ &~ z is immediately reoriented to z ~ t. By Lemma 3, |vf ~ uf|p =
|uf = vh|g. Also, according to our selection rule, a variable-variable equation
is never selected. Since v is not a variable, it is in the form f(vq,---,v,). Let
|ub ~ vl = m.

Consider the rule used at the root of the proof tree that F + uf ~ vf. This
was either an application of Congruence or Equation Application.

Case 1: Suppose the rule at the root of the proof tree of E F uf ~ vf is an
Equation Application. Then there exists a ground instance s’ =~ t6' of an
equation s ~ t in F, such that E - uf' ~ sf' and E + t0' ~ vf’', where 6
is an extension of 6 such that uf' = uf and v8' = vf. Let |uf' =~ s8'|g = p.
Let [t0' ~ v'|p = q. Then m = p + g + 1. We now consider two subcases,
depending on whether or not ¢ is a variable.

Case 1A: Suppose that ¢ is a not a variable. Then, by Lemma 5, we can assume
that the rule at the root of the proof tree of E t6' ~ v, is Congruence. So
then ¢ is of the form f(¢y,---,t,), and the previous nodes of the proof tree are
labeled with 16’ =~ v16',---,t,0" ~ v,0'. And, for each i, |t;0' =~ v;0'|g = q;
such that 1 + Elgign(h =q.

The proof tree of E + uf' ~ v#' in this case:

8O~ - 0~ v,

- Congr.
uf' =~ s’ Flr,)0 = f(vr,-,v,)0 FO gA
ub' & f(ur, -, 0,)0 e

Therefore, there is an application of Mutate that can be applied to u ~ v,
resulting in the new goal G' = {u ~ s,t1 ~ v1, -, t, & v,} UG;. Then
|uf = s8|g = p, and |t;0 ~ v;0|p = ¢; for all i, so u(G'9") < u(G,H).

sz(’l)l,"',l)n)

U RS, t1 &~ vy, SR tn & Un

Mutate

By the induction assumption there is an H such that G' — H with 0y <p
0'[Var(G")]. This implies that G —— H. Also, g <g G#'[Var(G)], since
the variables of G are a subset of the variables of G'. Since G8' = G, we
know that g <g 0[Var(G)].

Case 1B: Suppose that ¢ is a variable. Then, by Lemma 5, we can assume that

the rule at the root of the proof tree of E t t0' ~ v’ is Congruence. So then
td' is of the form f(t1,---,t,), and the previous nodes of the proof tree are
labeled with ¢; ~ v16',---,t, ~ v,8'. And, for each i, |t; =~ v;6'|p = ¢; such
that 1+ Zlgign(h’ =q.

: th z'vlﬁ’ tn z.vnﬂ’
uf' =~ s’ Flr, - tn) = f(vr, -, 0,)0
ub' & f(ur, -, 0,)0

Congr.

Eq. App.

Therefore, there is an application of Variable Mutate that can be applied
to u & v, resulting in the new goal G' = {u ~ s[t — f(z1, -, 2,)], 21 =
v, Ty & vy} UG} We will extend €' so that x;6' = ¢; for all . Then
|uf' =~ s8'|p = p, and |2;0' = v;0'|p = q; for all i, so u(G',8") < u(G,6).

u R f(ur, -, vn)

Var. Mut.
ar- Mut ur st f(z, -, z,)], T R~ U, R Ty & Up

where s &~ t € E and ¢ is a variable.

By the induction assumption there is an H such that G' = H with 0y <p
'[Var(G")]. This implies that G — H. Also, 8 <g 8'[Var(G)], since the
variables of G are a subset of the variables of G'. Since G#' = G, we know
that 0y <g H[V(IT(G)]

Case 2 Now suppose that the rule at the root of the proof tree of E - ufl ~ v

is an application of Congruence. There are two cases here: u is a variable or
u is not a variable.

Case 2A First we will consider the case where u is not a variable. Then v =

flur, -+ up), v=f(v1,---,v,) and E F u;0 ~ v;0 for all i.
Then u = f(uy, -, un), v= f(v,---,v,) and E F u;0 =~ v;6 for all i.

u1f ~ v16, . ,Unf & v,0

flur, - un)0 = f(vr, -, v,)0

There is an application of Decomposition that can be applied to u ~ v,
resulting in the new goal G' = {u; ~ vi, -+, u, & v,} UGy. Then |u;0 =~
00| < |uf = vl| for all i, so u(G',0) < u(G,H).

f(uh“':un) %f('Ul,"‘,’Un),Gl

up ~ U1,) Up R Up, Gl

Congr.

Decomp.

By the induction assumption there is an H such that G/ = H with 8y <g
O]V ar(G")]. This implies that G —— H and 8 <g 0[Var(G))].

Case 2B: Now we consider the final case, where u is a variable and the rule at
the root of the proof tree of E F uf =~ vf is an application of Congruence.
Let uf = f(ui,---,u,). Then, for each i, E = u; &~ v;0, and |u; =~ v;f|p <
|ub & vl|E.

uy & 16, - , Uy R Up

f(ula'“:un) %f(’l)h"',l)n)e

Congr.

There is an application of Variable Decomposition that can be applied to u ~
v, resulting in the new goal G' = {u ~ f(z1, -, z,) U ({z1 ® 01, , 2, &
UTL} U Gl)[u = .f(:I’Il: T /rn)]

sz('l)17"','l)n),G1

U%f(.rl,"',l'n), ('7"1 %vla'“rrn%UTHGl)[U'_)f('Th“':"ETL)]

Let 6’ be the substitution U[z1 — wy, -+, Ty = up]. Thenu s f(x1, -, 2,)
is solved in G'. Also |z;0' = vif'|g < |uf = vb|g for all i. Therefore
uw(G,0) < p(G',0"). By the induction assumption there is an H such that
G' - H with 8y <g 0'[Var(G")]. This implies that G — H. Also,
O <g 0'[Var(G)], since the variables of G are a subset of the variables
of G'. Since G#' = G, we know that g <g 0[Var(G)].

a

9 E-Unification for Syntactic Theories

In this section we will show how we can restrict our inference rules further to get
a set, of inference rules that resembles the Syntactic Mutation rules of Kirchner.
Then we prove that that set of inference rules is complete for syntactic theories.

The definition of a syntactic theory is in terms of equational proofs. The
definition of a proof is as follows.

Definition 2. An equational proof of u ~ v from E is a sequence ug ~ u; ~
Uy & -+ & Uy, for n >0 such that ug = u, u, = v and for all i > 0, u; = uy[s]
and u;r1 = u;[t] for some s ~t € E.

Now we give Kirchner’s definition of syntactic theory.

Definition 3. An equational theory E is resolvent if every equation u = v with
E = u ~ v has an equational proof such that there is at most one step at the
root. A theory is syntactic if it has an equivalent resolvent presentation.

From now on, when we discuss a Syntactic Theory E, we will assume that E
is the resolvent presentation of that theory.

In this paper, we are considering bottom-up proofs instead of equational
replacement proofs. We will call a bottom-up proof resolvent if whenever an

equation appears as a result of Equation Application, then its left and right
children must have appeared as a result of an application of Congruence at
the root. We will call E bottom-up resolvent if every ground equation u = v
implied by E has a bottom-up resolvent proof. Now we show that the definition
of resolvent for equational proofs is equivalent to the definition of resolvent for
bottom-up proofs.

Theorem 4. FE is a resolvent presentation of an equational theory E if and only
if E is a bottom-up resolvent presentation of E.

Proof. We need to show how to transform a resolvent equational proof into a
resolvent bottom-up proof and vice versa.

Case 1: First consider transforming a resolvent equational proof into a resolvent
bottom-up proof. We will prove this can be done by induction on the number
of symbols appearing in the equation.

Case 1A: Suppose u &~ v has an equational proof with no steps at the root.
Then u =~ v is of the form f(uy, - -,u,) & f(v1, --,v,), and there are
equational proofs of u; =~ v; for all i. Since each equation u; ~ v; has fewer
symbols than v & v, then, by the induction argument there is a resolvent
bottom-up proof of each u; ~ v;, and by adding one more congruence step
to all the u; =~ v;, we get a resolvent bottom-up proof of u =~ v.

Case 1B: Now suppose u & v has an equational proof with one step at the root.
Then there is some ground instance of s & t in F such that the proof of u = v
is a proof of u &~ s with no steps at the top, followed by a replacement of s
with #, followed by a proof of £ & v with no steps at the root. By induction,
each child in the proof of u & s has a resolvent bottom-up proof. Therefore
u & s has a resolvent bottom-up proof with a Congruence step at the root.
Similarly, ¢ ~ v has a resolvent bottom-up proof with a Congruence step
at the root. If we apply Equation Application to those two proofs, we get a
bottom-up resolvent proof of u ~ v.

Case 2: Now we will transform a resolvent bottom-up proof of u &~ v to an
equational proof of u & v, by induction on |u & v|g.

Case 2A: Suppose u &~ v has a bottom-up resolvent proof with an application
of Congruence at the root. Then u = v is of the form f(uy, - ,u,) ~
flui,---,v,), and there are bottom-up resolvent proofs of u; ~ v; for all
i. Since each equational proof of u; & v; is shorter than the proof of u ~ v,
then, by the induction argument there is a resolvent equational proof of each
u; =~ v;, and they can be combined to give a resolvent equational proof of
U .

Case 2B: Now suppose u &~ v has a resolvent bottom-up proof with one Equa-
tion Application step at the root. Then there is some s ~ ¢ in E such that
the proof of u & v is a proof of u &~ s with a Congruence step at the root,
and a proof of t & v with a Congruence step at the root. Then an Equation
Application using the equation s =~ t from E. By induction, the correspond-
ing equalities of subterms of u & s have resolvent equational proofs. So u = s
has a resolvent equational proof with no steps at the root. Similarly, t ~ v

also has a resolvent equational proof with no steps at the root. So u = v has
a resolvent equational proof with one step at the root.
a

Now we give the inference rules for solving E-unification problems in Syntac-
tic Theories. The rules for Decomposition and Variable Decomposition remain
the same, but Mutate becomes more restrictive. We replace Mutate and Variable
Mutate with one rule that covers several cases.

Mutate
{u~v}UG

{Dec(u =~ s),Dec(v~t)} UG

where u &~ v is selected in the goal, s ~ ¢t € E, if both u and s are not variables
then they have the same root symbol, and if both v and ¢ are not variables then
they have the same root symbol. We also introduce a function Dec, which when
applied to an equation indicates that the equation should be decomposed further
according to the following rules:

{Dec(f(ur, -, up) ~ f(s1,---,8,)) }UG

{ug & 51, up s} UG

{Dec(z =~ f(s1,-+,s,)} UG
{o~ f(s1,--,8)}UG[w = f(s1,-+,80)]

{Dec(z = y)} UG
{r~y}UG
{Dec(f(s1,"-,sn) ®z)} UG
Glz = f(s1, -, 5n)]
Now we prove a completeness theorem for this new set of inference rules,

which is Decomposition, Variable Decomposition, and the Mutate rule given
above.

Theorem 5. Suppose that E is a resolvent presentation of an equational theory,
G is a set of goal equations, and 0 is a ground substitution. If E |= GO then there

exists a goal H such that G —— H and 8 <g 0[Var(G)].

Proof. The proof is the same as the proof of Theorem 3, except for Case 1.
In this case, we can show that one of the cases of the Mutate rules from this
section is applicable. Here, instead of using Lemma 5 to say that an Equation
Application must have a Congruence as a right child, we instead use the definition
of bottom-resolvent to say that an Equation Application has a Congruence as
both children.

If nothing is selected, i.e. G is in normal form, then 6 is the most general
unifier of G, therefore g <p 0[Var(G)].

Assume that u = v is selected in G. We can assume as before that v is not a
variable (because otherwise it would be at once oriented, or if u is also a variable,
the equation could not have been selected at all). Let |uf ~ vf|g = m.

Case 1: Suppose the rule at the root of the proof tree of £ F uf ~ vf is an
Equation Application. Then there exists a ground instance s6’' = t6' of an
equation s = t in E, such that E - uf' ~ sf' and E + t' ~ vf’', where 6
is an extension of § such that uf’ = uf and v8' = vé. Let |uf = sO|g = p.
Let |t6 = v0|, = q. Then m = p+ ¢ + 1. We know also that E + uf’ ~ s’
and E + t0' ~ vb', were both obtained by Congruence (because we are
considering only resolvent ground proofs). We now consider two subcases,
depending on whether or not ¢ is a variable.

Case 1A: Suppose that u, s, t are not variables. So then w is of the form f(u1,- -, uy,),
s is of the form f(s1,---,sy,) and t is of the form f(¢1,--,%,), and the frag-
ment of the derivation looks like the following;:

uiﬂ' ~ Sigl 16 U 01
f(uh---”u,n)gl%f(Sh---’Sn)gl (t)6 ~ (’Ula"'avn)gl
f(ul:'“:un)glzf(vlan) ¢’

Therefore there is an application of Mutate resulting in new goal G' = {u; ~
S1, Up R Sp, b1 UL, by R, UG

f(ula'“:un) %f(vla"'fun) (.f(817“'75n) %f(tlaltn) EE)
{Dec(f(ula'“:un) Nf(Sl,"',Sn)),DEC(f(’Ul,"',Un) Nf(t17ltn))}UG

{ug & 81, Up X Sp, b1 RBUy, -ty R} UG

Then 215i3n|ui0’ ~ 5i6l|E =p and Elgign‘tigl ~ Uigl‘E = q, SO /I,(Glel) <
u(G,6). By the induction assumption there is an H such that G — H with
G'8y <p G'6'. This implies that G —— H. Also, Gy <p GO', since the
variables of G are a subset of the variables of G'. Since G6' = G0, we know
that GOy < G6.

Case 1B: Suppose t is a variable, and u and s are as in the previous case. The
root of the proof tree of E F 16’ ~ v’ is Congruence. So then #6’ is of the
form f(t1,---,t,).

ui0’ ~ siG’ t; & viG’
f(ul7"'7un)0, ~ f(slz"'wsn)al f(tlz"'7tn) ~ f(vlz"'ﬂ)n)a’
f(ulz"':un)al ~ f('l)17"','l)n)0’

There is an application of Mutate resulting in the new goal, G' = {(u1 ~
S1,7 0, Up R Sn)[t — f('l)l,"','l)n)]}UG.

flug, - un) & flor, - 0n) (f(s1,---,80) ®REEE)
{Dec(f(u1, -, un) & f(s1, -+, 8n)), Dec(f(vi,---,v,) =)} UG

{ur = s1,- Uy s, UGt f(vr,---,0,)]
For each u; & s;, |(ui & s;)[t = f(v1,---,v,)]0'|E is equal to |u0' = s;0'|k,
because t = f(v1,---,v,)0" and thus [t — f(v1,---,v,)]0" is the same as

6. Hence: ZISZSTL|UZHI X Sl[t = f(Uh' t 7Un)]0I‘E =D]-7 SO H(Glel) <
u(G,6). By the induction assumption there is an H such that G' = H

with G'8y <g G'6’. This implies that G —— H. Also, Gy <g G#', since
the variables of G are a subset of the variables of G'. Since G8' = G, we
know that GOy < G6.

Case 1C: Assume s is a variable and u,t are not variables. This case is sym-
metrical to the previous one.

Case 1D: Assume that u is variable and s, ¢ are not. Then uf' ~ f(u,- -, uy),
and the situation in the ground derivation is as in the following diagram:

U; ~ siG’ tiG’ ~ viG’
f(ula'“:un) ~ f(Sl,"',Sn)el f(tla"'atn)gl ~ f(vl,---,vn)G’
f(uh'":un) ~ f(vlz"':vn)al

Then there is an application of Mutate to u &~ v resulting in the goal G' =
{um f(s1,---,sn)}U{v1 =1, o, Rt} UG)[u f(s1,--,8n)]

uR f(or,---,v0) (f(s1,-,sn) ® f(t1,--- 1) €E)
{Dec(u =~ f(s1,--,5n)), Dec(f(vr, - ,vn) & f(t1,---,tn)) } UG
{um f(s1,- -, 80) U {{v1 =i, -0, RE,JUG) u— f(s1,-+,80)]

Since uf’ = f(s1,---,s,)0', the substitution [u — f(s1,---,s,)] does not
change anything in the ground proof. We do not count p into the measure any
more, because the equation is solved and |(v; & t;)[u — f(s1, -, sn)]0'|E =
‘(Ui ~ ti)6I|E; i.e. Elgign‘(vi ~ tl)H"E =q— 1. Hence ,LL(GIHI) < //'(G, 0) By
the induction assumption there is an H such that G' —— H with G'0g <g
G'#'. This implies that G —— H. Also, GAy <g G#', since the variables of G
are a subset of the variables of G'. Since GO’ = G, we know that Gy < G6.

Case 1E: Now let us assume that u and s are variables and ¢ is not. Then
application of Mutation will result with the new goal G' = {u ~ s,v1 ~
i, on At} UG

ur f(ur, o ,vn) (s f(ti, -, ty) € E)
{DBC(’U/% S),DEC(f(’Ul,"',’Un) %f(tlaatn))}UG
{uxs,vy rty, o Rt, UG

Obviously (because of the decomposition involved), u(G'8') < u(G,6). By
the induction assumption, there is an H such that G’ —— H with G'fy <g
G'#'. This implies that G — H. Also, Gy <g G', since the variables of G
are a subset of the variables of G'. Since GO’ = G, we know that Gy < G6.

Case 1F: Assume that s,t are variables and « is not. The application of Mu-
tation to u ~ v will result with a new goal G' that is equal to G with the
quation u & v erased.

flur, - un) = f(vr,---,0n) (sxt€E)
{Dec(f(u1, --,un) & s),Dec(f(vr, -,v,) 8t)}UG
Gls — f(ul,---,unc);][tb—) flor, -, v,)]

Obviously, u(G'0") < u(G,0). By the induction assumption, there is an H
such that G’ — H with G'8y <g G'#'. This implies that G —— H. Also,

GOg <g G6', since the variables of G are a subset of the variables of G'.

Since G#' = GA, we know that GOy < G6.

Case 1G: Assume that u,t are variables and s is not. The application of Mu-
tation to u & v will result with the goal G' = ({u~ f(s1, -+, sn)} UG[u —

f(slsn)])[t = f(v1="'=vn)]'

uzf(vh"':vn) (f(81,"',8n)%t€E)
{Dec(u = f(s1,--,8n)), Dec(f(v1, - ,vn) ®t)}UG
({uzf(sl,---,sn)}UG[u»—)f(sl,---,sn)])[tb—)f(vl,---,vn)]

Both substitutions [u — f(s1,---,s,)] and [t — f(vi,---,v,)] will change

nothing with respect to the grounding substitution ', the equation u

~

f(s1,-+-,s,) will be solved, hence not taken into account in the measure,
hence u(G'6") < u(G,H). By the induction assumption, there is an H such
that G' — H with G’y <p G'#'. This implies that G —— H. Also,
GOy <p GO', since the variables of G are a subset of the variables of G'.

Since G8' = GO, we know that GOy < G6.

Case 1H: Finally, assume that all u,s,t are variables. Mutate will result with

anew goal G’ = {{u~ s} UG)[t — f(v1,---vn)]} .
ur f(vr, --,0n) (sxt€eE)
{Dec(u =~ s), Dec(f(vi,---,v,) = t)} UG
Hu=stUG)[t— f(vr,--v,)]

In fact, t is new in the inference, hence it can only be equal to s, and can be
nowhere else in the new goal. Because t0' = f(v1,---v,)0' the substitution

[t = f(v1,- - v,)] cannot affect the ground proof, hence, obviously, u(G'8")

<

u(G, 6). By the induction assumption, there is an H such that G' —= H with
G'0y <p G'6'. This implies that G —— H. Also, Glg <g G#', since the
variables of G are a subset of the variables of G'. Since G#' = G, we know

that GOy < G6.

Case 2 Now suppose that the rule at the root of the proof tree of E - uf = vf
is an application of Congruence. There are two cases here: u is a variable or

u 1s not a variable.
Case 2A First we will consider the case where « is not a variable. Then u
flur, -+ up), v=f(v1,---,v,) and E F u;0 ~ v;0 for all i.

There is an application of Decomposition that can be applied to u ~ v,

resulting in the new goal G' = {u; ~ vy, -, u, & v,} UGy. Then |u;0
00| < |uf = vl| for all i, so u(G',0) < u(G,H).

~

By the induction assumption there is an H such that G' — H with

G'8y <g G'#. This implies that G —— H and G <g G6.

Case 2B: Now we consider the final case, where u is a variable and the rule at
the root of the proof tree of E F uf =~ vf is an application of Congruence.

Let uf = f(uy, -, uy,). Then, for each i, E = u; & v;0, and |u; ~ v;0|g
lu & v|g.

<

There is an application of Variable Decomposition that can be applied to u ~

v, resulting in the new goal G' = {u =~ f(z1, -+, z,)} U ({z1 m v, -, 2y
UTL} UGl)[U = .f(:I’Il: o /’En)]

~

Let 6’ be the substitution U[z1 — wuy, - -, Ty = uy]. Thenu s f(x1,- -, 2,)
is solved in G'. Also |z;6' =~ v;6'|g < |uf = v8|g for all i. Therefore (G, 6) <
w(G',6"). By the induction assumption there is an H such that G' = H
with G'8y <g G'#'. This implies that G —— H. Also, Gy <p GO', since
the variables of G are a subset of the variables of G'. Since G§' = G, we
know that GOy < G6.

O

10 Conclusion

We have given a new goal-directed inference system for E-unification. We are
interested in goal-directed E-unification for two reasons. One is that many other
inferences systems for which E-unification would be useful are goal directed, and
so a goal-directed inference system will be easier to combine with other inference
systems. The second reason is that we believe this particular inference system is
such that we can use it to find some decidable classes of equational theories for
FE-unification and analyze their complexity. We are writing a forthcoming paper
on this topic.

The inference system we have given is similar to the Syntactic Mutation
inference system of [5]. The difference is that our inference system can be applied
to all equational theories, not just Syntactic Theories as in their case. Also, we
give a completeness proof, even if E contains collapsing axioms.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

2. J. Gallier and W. Snyder. A general complete E-unification procedure. In RTA 2,
ed. P. Lescanne, LNCS vol. 256, 216-227, 1987.

3. J. Gallier and W. Snyder. Complete sets of transformations for general E-unification.
In TCS, vol. 67, 203-260, 1989.

4. C. Kirchner. Computing unification algorithms. In Proceedings of the First Sympo-
sium on Logic in Computer Science, Boston, 200-216, 1990.

5. C. Kirchner and H. Kirchner. Rewriting, Solving, Proving.
http://www.loria.fr/~ckirchne/ , 2000.

6. C. Kirchner and F. Klay. Syntactic Theories and Unification. In LICS 5, 270-277,
1990.

7. F. Klay. Undecidable Properties in Syntactic Theories. In RTA /,ed. R. V. Book,
LNCS vol. 488, 136-149, 1991.

8. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebra. In
Computational Problems in Abstract Algebra, ed. J. Leech, 263-297, Pergamon
Press, 1970.

9. C. Lynch and B. Morawska. Goal Directed E-Unification.
http://www.clarkson.edu/"clynch/papers/goal_long.ps/, 2000.

