
J. Symbolic Computation (1997) 23, 23–45

Oriented Equational Logic Programming is Complete

CHRISTOPHER LYNCH†

INRIA Lorraine et CRIN, Campus Scientifique, BP 101,
54602 Villers-lès-Nancy, Cedex, France

(Received 17 May 1995)

We show the completeness of an extension of SLD-resolution to the equational setting.
This proves a conjecture of Laurent Fribourg and shows the completeness of an imple-
mentation of his. It is the first completeness result for superposition of equational Horn
clauses which reduces to SLD resolution in the non-equational case. The inference sys-
tem proved complete is actually more general than the one of Fribourg, because it allows
for a selection rule on program clauses. Our completeness result also has implications
for Conditional Narrowing and Basic Conditional Narrowing.

c© 1997 Academic Press Limited

1. Introduction

The combination of logic and functional programming is a popular topic of research. Logic
programs are sets of definite Horn clauses (sometimes called program clauses, i.e., clauses
containing one positive literal) with goals to be solved represented as negated literals. The
SLD-resolution inference rule is a way of solving the goal in a goal-directed fashion. Equa-
tional programming is a generalization of functional programming. Equational programs
can be represented as sets of equations. Goals are represented as equations. If the set of
equations is convergent, a goal can be solved by narrowing (a generalization of rewrit-
ing) the goal into an identity. A non-convergent set of equations can be converted into
a convergent set by ordering the terms with a well-founded reduction ordering and per-
forming Knuth–Bendix Completion. The ordering on the terms is an important property
of Knuth–Bendix Completion. In Completion, an inference rule replaces some instances
of a term in an equation by equivalent smaller terms. In some cases, all the instances
of a term are replaced, and the equation may be deleted. The combination of logic and
equational programming can be represented by equational Horn clauses. In this case, a
goal is solved by a combination of SLD-resolution and narrowing. This is the paradigm
that is shown complete in this paper.

In logic programming, the property an inference system must satisfy is that wheneverG
is a goal and θ is a substitution such that Gθ is implied by the program clauses, then some
substitution σ must be computed such that θ can be derived from σ. This is generally
done by finding a substitution σ that is more general than θ. When the clauses contain

† E-mail: lynch@loria.fr

0747–7171/97/010023 + 23 $25.00/0 sy960075 c© 1997 Academic Press Limited

24 C. Lynch

equations, the program clauses determine an equational theory E. Therefore, in this
case, it is only necessary to find a substitution σ such that σ is more general than θ
modulo E. If such substitutions are always computed, we say the inference system is
complete with respect to answer substitutions. A weaker property, which is often all that is
useful in theorem proving, is to show that the empty clause will always be generated from
an unsatisfiable set of clauses. This is called refutational completeness. A resolution or
paramodulation inference system which is complete with respect to answer substitutions
is refutationally complete, because the proof that σ is a correct answer is a deduction of
the empty clause. In this paper, we save substitutions with each clause. Then when the
empty clause is created, the substitution associated with it is an answer substitution. We
will prove that our inference system is complete with respect to answer substitutions.

The question of inference systems for equational Horn clauses has been attacked from
different angles, by researchers in automated theorem proving and logic programming.
However, only .Fribourg (1984) gives an inference system that reduces to logic program-
ming in the non-equational case and reduces to a combination of ordered completion
.(Bachmair, 1991) and narrowing .(Kaplan, 1984) in the unit equation case. Fribourg pro-
poses performing superposition among heads of program clauses or between a head of a
program clause and a goal equation, but never between the head of a program clause and
the condition of another program clause. This system was implemented, however, the
author was only able to prove completeness if superposition into variables was allowed
and functional reflexivity axioms were added. The author conjectured that completeness
still holds if these conditions are dropped. In this paper, we prove that conjecture true.
To see an example of this inference system, consider the following set of clauses:

1. ⇒ P (a)
2. P (a)⇒ a ≈ b
3. P (b)⇒

where ≈ is the equality symbol, ⇒ is the implication symbol. We must give an ordering
on the terms, because we only need to replace terms by smaller terms. Suppose we
choose an ordering such that a > b. The last clause P (b) ⇒ is the goal. The following
is a refutational proof of this set of clauses†. The goal clauses are printed in boldface to
indicate the structure of the proof.

⇒ P (a)

P (a)⇒ a ≈ b ⇒ P (a)

P (a)⇒ P (b) P(b)⇒
P(a)⇒

2

One superposition inference is necessary among the heads of the program clauses
P (a)⇒ a ≈ b and⇒ P (a). The rest of the proof is a series of resolution steps against the
goal. We call this method top down because no inferences are required among the head of
a program clause with the condition of another clause. Notice how this is equivalent to a
completion procedure plus a goal-directed proof. The interesting feature of this inference

† Without variables, refutational completeness is equivalent to completeness with respect to answer
substitutions.

Oriented Equational Logic Programming 25

system is its combination of top down and bottom up reasoning. The bottom up part is
the completion among the heads of clauses, and the top down part is the goal solving.

Another inference method for equational Horn clauses is the lazy paramodulation
method of .Snyder and Lynch (1991a), extended to full first-order logic in .Snyder and
Lynch (1991b). In this method, no paramodulation is needed among definite clauses.
However, the inferences are lazy in the sense that the unification problem is saved as a
negative equation and not solved immediately. Additionally, ordered paramodulation is
not sufficient, and simplification is not allowed. Therefore, this inference system does not
reduce to narrowing in the unit case, but it is goal-directed. The following is a proof of
the above example in the goal-directed inference system.

⇒ P (a)

⇒ P (a)

P (a)⇒ a ≈ b P(b)⇒
P(a),P(a)⇒

P(a)⇒
2

All of the inferences are either resolution steps or paramodulation steps against the
goal clause. Notice that the first inference performed was not ordered, because a > b. In
other words, it was necessary to replace a term by a bigger term.

Another inference method for equational Horn clauses is the bottom-up method
.(Dershowitz, 1991; Nieuwenhuis and Nivela, 1991). This was extended to the first-order
case in .Bachmair and Ganzinger (1994) and .Bachmair et al. (1995). In this method,
the literals in the body of a definite clause must be solved before the head can be used
in an inference with the goal. Therefore, this does not reduce to SLD-resolution in the
non-equational case. A bottom up proof of the above example is as follows:

⇒ P (a)

⇒ P (a) P (a)⇒ a ≈ b
a ≈ b

⇒ P (b) P(b)⇒
2

For every inference, one of the premises is a unit program clause. But the other premise
can be a condition of another program clause. The inference against the goal is not until
the end of the proof.

A related inference system is one where only a maximal literal in a clause can be used
in an inference .(Kounalis and Rusinowitch, 1988). This was extended to the first-order
case in .Rusinowitch (1988), .Hsiang and Rusinowitch (1991), .Pais and Peterson (1991)
and .Bachmair and Ganzinger (1990). It is not always possible to choose an ordering such
that this reduces to SLD-resolution in the non-equational case. For this strategy, the
relationship between refutational completeness and completeness with respect to answer
substitutions has been investigated by .Nieuwenhuis (1995). None of the known proof
techniques for the bottom-up and maximal literal methods can be extended to a method
which reduces to SLD-resolution, because they all require an inference to be performed on
a negative literal if the maximal literal in the clause is negative. Therefore, it is necessary
to develop a new completeness proof technique to prove our completeness result.

We give a general inference method, whose particular cases include the top-down
method of Fribourg, the bottom-up method and the maximal literal method, or any
combination of these such that different clauses use different strategies. For instance, we

26 C. Lynch

may require that we must solve all the negative literals in one program clause before we
use the head in an inference. But for another program clause, we may require that the
negative literals are not solved until they appear as subgoals of the initial goal. All of
these strategies, except for the goal-directed lazy paramodulation strategy, can be en-
coded by a selection rule that selects one literal from each clause (including the program
clauses) to perform inferences on. What we prove is that no matter what selection rule is
chosen, the inference system is complete. Therefore we have shown the completeness of
each of these inference systems in one proof. However, our main concern is to solve the
conjecture of Fribourg, since that is the method which reduces to SLD-resolution and
the combination of completion and narrowing. We also show that this strategy can be
combined with simplification without losing completeness. However, subsumed clauses
and tautologies may not always be removed. But they may be restricted from being in-
volved in inferences with goal clauses. We give conditions showing when they are allowed
and examples illustrating why they are not always allowed. Also, we show that our in-
ference system can be combined with a Basic strategy (.Hullot, 1980; .Bachmair et al.,
1992, .1995; .Nieuwenhuis and Rubio, 1992, .1995) so that goal clauses are solved without
allowing inferences into substitution positions.

Another inference system for equational Horn clauses is Conditional Narrowing
.(Middledorp and Hamoen, 1994). This inference system is the combination of SLD-
resolution and narrowing. Since no completion is involved, this is only complete for
certain classes of equational Horn clauses. We show, in this paper, how conditional nar-
rowing can be extended by adding completion so that it is complete for all classes of
equational Horn clauses. We also prove it for Basic Conditional Narrowing. We give a
comparison of our method with the traditional methods of Conditional Narrowing, and
the sense in which we believe our method is an improvement over the other methods.

The form of the paper is as follows. In Section 2, we give the definitions of this paper.
At the end of the section, we define the important concept of selection rules. In Section 3,
we define a schema for the inference rules used in this paper. Each selection rule as defined
in Section 2 gives a particular instance of the inference rule schema. After defining the
inference rules, Definition 3.1 shows how to construct a model from a set of Horn clauses.
This model contains all the properties needed in the completeness proof. In Section 4, we
prove the completeness of each instance of this schema, using the model constructed in
Definition 3.1. At the beginning of Section 3, we give an abstract definition to determine
when a clause is redundant. In Section 5, we show how the standard deletion rules fit
into this abstract framework. In a few cases, the deletion rules do not fit into the frame,
and in those cases we exhibit a counterexample showing that those deletion rules are not
complete. In Section 6, we show the relationship between our method and the traditional
methods of Conditional Narrowing. Finally, in the conclusion we summarize our results
and give some ideas for future enhancements of the technique.

2. Preliminaries

Our setting is Horn clauses with equality predicates. We use mostly standard notions
of rewriting .(Dershowitz and Jouannaud, 1990) and only define notions that may not be
standard.

Definition 2.1. An atom is a predicate applied to some terms. A special case is the
equality predicate ≈ which is a binary predicate represented in infix notation. A model is

Oriented Equational Logic Programming 27

a set of ground atoms. If M is a model and A is a ground atom, we say that M implies
A, and write M |= A if M implies A in all equational theories. If Γ is a set of ground
atoms, then M |= Γ if M |= A for all A ∈ Γ†. If S and T are sets of equations, we say
that S ≡ T if for all equations A, S |= A if and only if T |= A. If E is a set of equations
and s and t are terms, then s ≡E t means that E |= s ≈ t. For equations s ≈ t and
s′ ≈ t′, we define (s ≈ t) ≡E (s′ ≈ t′) to mean that s ≡E s′ and t ≡E t′.

We define ground clauses and substitutions.

Definition 2.2. A substitution is a mapping from variables to terms which is almost
everywhere the identity. We define Dom(σ) = {x | xσ 6= x}. We identify a substitution
with its homomorphic extension. The composition ση of substitutions σ and η is defined
so that for all terms t, tση = (tσ)η. Let V be a set of variables and E be a set of equations.
We say that σ ≤E θ|V if there is a substitution η such that, for all x ∈ V , E |= xση ≈ xθ.
If E is missing it is assumed to be the empty set. If V is missing it is assumed to be the
set of all variables. We say σ ≡E θ|V if and only if E |= xσ ≈ xθ for all x ∈ V . We
say σ = θ|V if xσ = xθ for all x ∈ V . The substitution σ is a unifier of terms s and t if
sσ = tσ. σ is a most general unifier of s and t (written mgu(s, t)) if σ is a unifier of s
and t, and for all unifiers θ of s and t, σ ≤ θ.

We assume we have a procedure which produces idempotent mgu’s (i.e., for all vari-
ables x, x is not a proper subterm of xσ).

Since we prove completeness with respect to answer substitutions, we separate a clause
from its substitution. A ground instance is then just a further instantiation of the substi-
tution (the substitution is still kept separate)‡. We warn the reader that two terms can
be considered to be different terms, even if they become the same when their substitutions
are applied.

Definition 2.3. An equational Horn clause C is a pair containing a clause and a sub-
stitution, of the form Γ ⇒ ∆ [[σ]], where Γ is a set of atoms and ∆ is a set of atoms,
containing zero or one atom. When the substitution σ is not important we simply write
the above clause as Γσ ⇒ ∆σ. If ∆ contains no atoms then C is called a goal clause
and is written as Γσ ⇒. If ∆ contains one literal A then C is called a program clause
and is written as Γσ ⇒ Aσ. If Γ is empty and ∆ contains the literal A then we write it
as ⇒ Aσ and call it a fact. If both Γ and ∆ are empty, then we write 2 and call it the
empty clause. If Γσ ⇒ ∆σ is a ground clause, we say that M |= Γσ ⇒ ∆σ if and only
if M 6|= Γσ or there exists a B ∈ ∆σ such that M |= B.

We have presented clauses as a combination of an unconstrained clause and a substi-
tution. The substitution can be considered as a constraint on the instances of a clause

.(Kirchner et al., 1990). The most general unifier σ = mgu(s, t) is an equational con-
straint, which is just a simplification of the equational constraint s = t. We choose to
represent it as the most general unifier to make it clear how the answer substitutions are
read off from the constraint, but it could just as easily be represented as the equation

† This is trivially true if Γ is empty.
‡ Although, it is often written as if it were applied, when it does not matter in the context.

28 C. Lynch

s = t. There are many recent results on constrained deduction. Viewing most general
unifiers as equational constraints illustrates how this paper fits into that framework.

Definition 2.4. The substitution σ is a grounding substitution of C [[θ]] if Cθσ con-
tains no variables. If C [[θ]] is a clause then Gr(C [[θ]]) = {C [[θσ]] | σ is a grounding
substitution of Cθ}. If D is in Gr(C [[θ]]), then D is an instance of Gr(C [[θ]]). If S is
a set of clauses, then Gr(S) =

⋃
C∈S Gr(C). We consider clauses C [[θ]] and D [[σ]] to

be identical if they are goal clauses and C [[θ]] = D [[σ]], or if they are program clauses
and there is a renaming substitution η (i.e., for all variables x, xη is a variable and η
is injective) such that Cη = D and Cθη = Dσ.

Let V be the set of variables. We will divide V into a set VG of goal variables and
a set VP of program variables. The goal variables are the variables which appear in the
initial goal clauses. The program variables are the variables which appear in the initial
program clauses, plus any fresh variables that are created. Variables in program clauses
are renamed before an inference is performed.

To simplify the proofs, we encode each of the clauses in a new signature, so that all
literals are equality literals. This requires adding a new constant >. Each non-equational
atom A is encoded as the equation A ≈ >. Predicate symbols in A become function
symbols in this encoding. The purpose for this encoding is that we now only need to deal
with equations, which makes the completeness proof easier to read. Therefore, we don’t
present the resolution inference rule, because it is encoded by a goal paramodulation and
equation resolution inference.

A reduction ordering on terms must be given, which is then extended to equations.
We define some reducibility notions based on that ordering.

Definition 2.5. Let ≺r be a reduction ordering on terms and non-equational atoms,
total on ground terms. We identify ≺r with its multiset extension, extended to equations
by considering an equation s ≈ t as the multiset {s, t}.

Definition 2.6. Let A [[θ]] be an equation and A [[θσ]] be a ground instance of A [[θ]].
Let R be a rewrite system. We say that A [[θσ]] is substitution reduced by R if there is no
equation s ≈ t in R such that s ≈ t ≺r Aθσ, s Âr t, and s is a subterm of xθσ for some
variable x in A. We define θ ↓R as the substitution θ′ such that Dom(θ) = Dom(θ′), for
all x ∈ Dom(θ), xθ′ ≡R xθ, and there is no t such that t ≡R xθ′ and t ≺r xθ′.

Next we define a set S of ground equations to be left-reducible if some equation in S
reduces the maximum side of some other equation. The word “left” refers to the fact that
if an equation is written as a rewrite rule, then the maximum side appears on the left.

Definition 2.7. Let u ≈ v be a ground equation and S be a set of ground equations. We
say that u ≈ v is left-reducible by S if u Âr v and there is an equation s ≈ t ∈ S such
that s is a subterm of u, s Âr t and (s ≈ t) ≺r (u ≈ v). If u ≈ v is not left-reducible
by S then it is left-irreducible by S.

Definition 2.8. A set of equations R is reduced if, for each equation u ≈ v in R, u ≈ v
is substitution reduced by R and u ≈ v is left-irreducible by R.

Oriented Equational Logic Programming 29

Notice that a reduced set of equations is always convergent. This is because the largest
side of each equation is reduced by the other equations.

A selection rule is a function from a clause to exactly one literal in that clause. Only
selected literals must be used in inferences.

Definition 2.9. A selection rule is a function Sel from the set of all clauses to the set
of all literals such that Sel(C [[θ]]) ∈ C [[θ]] for all clauses C [[θ]]. If Sel(C [[θ]]) = L [[θ]],
we say that L (or L [[θ]]) is selected in C [[θ]] or that C [[θ]] selects L (or L [[θ]]).

In Section 3, we show how the selection rule is used in inferences and how it can be
used to encode the maximal literal strategy, we select a maximal literal in each clause.
To encode the bottom-up method, we select one negative literal in each clause containing
one, and a positive literal otherwise. This guarantees that each inference will contain a
fact, since each inference must contain a clause with a positive selected literal and only
facts will have a positive literal selected. To encode the top-down strategy of Fribourg,
we select the positive literal in each program clause and one negative literal in each goal
clause. See Section 3 for the details.

3. The Inference Rules

In this section, we give the inference rules.
There are two paramodulation inference rules. Superposition is a paramodulation

among the heads of program clauses and Goal Paramodulation is a paramodulation into
a goal clause or the condition of a program clause. It is called Goal Paramodulation
because it is used to solve a negative literal, which is a current or potential goal. In the
strategy which always selects a positive literal of a program clause, it is only used to
solve a current goal, because only goal clauses have a negative literal selected. The two
inference rules have exactly the same form; the only difference is whether a negative or
positive literal is paramodulated into.

superposition

Γ⇒ s ≈ t [[θ1]] ∆⇒ u[s′] ≈ v [[θ2]]
Γ,∆⇒ u[t] ≈ v [[σ ∧ θ1 ∧ θ2]]

.

goal paramodulation

Γ⇒ s ≈ t [[θ1]] u[s′] ≈ v,∆⇒ Π [[θ2]]
u[t] ≈ v,∆,Γ⇒ Π [[σ ∧ θ1 ∧ θ2]]

.

For both of the above inference rules, we have the following conditions.

1. σ = mgu(sθ1, s′θ2),
2. s′ is not a variable,
3. s ≈ t [[θ1]] is selected in Γ⇒ s ≈ t [[θ1]],
4. u[s′] ≈ v [[θ2]] is selected in its clause,
5. sθ1σ 6≺r tθ1σ, and
6. u[s′]θ2σ 6≺r vθ2σ.

30 C. Lynch

To complete the inference system, we need an inference rule, called Equation Resolution
which is applied to get an answer substitution for a solved equation.

equation resolution

s ≈ t,∆⇒ Π [[θ]]
∆⇒ Π [[σ ∧ θ]]

where

1. σ = mgu(sθ, tθ), and
2. s ≈ t [[θ]] is selected in s ≈ t,∆⇒ Π [[θ]].

Resolution can be encoded by Paramodulation and Equation Resolution. Paramodu-
lation into non-equality predicates is represented here by its encoding.

We now show how the inference systems mentioned in the introduction are encoded
by the selection rule.

The inference system of .Kounalis and Rusinowitch (1988) only allows inferences in-
volving maximal literals. This is expressed by modifying the above inference rules so
that condition number 3 is modified to read: s ≈ t [[θ1]] is maximal in Γ ⇒ s ≈ t [[θ1]],
and condition 4 is modified to read: u[s′] ≈ v [[θ2]] is maximal in its clause. Further-
more, condition 2 of Equation Resolution is modified to read: s ≈ t [[θ]] is maximal in
s ≈ t,∆⇒ Π [[θ]]. This is encoded by the selection rule that selects a maximal literal in
each class. In fact the encoding gives a more restrictive inference system because a clause
may have more than one maximal literal.

The bottom-up inference system of .Dershowitz (1991) and .Nieuwenhuis and Nivela
(1991) only allows an inference involving the head of a program clause if the body of
that clause is empty. We encode this rule by selecting a negative literal in every clause
that has one. It can be expressed by the given inference rules if we require that Γ = ∅ and
∆ = ∅ for the Superposition inference rule, and that Γ = ∅ for the Goal Paramodulation
inference rule. That means that conditions 3 and 4 are not necessary for the Superposition
inference rule. For the Goal Paramodulation inference rule condition 3 is not necessary.

Next, we consider the top down inference system, which was conjectured to be complete
in .Fribourg (1984), which does not allow any inferences into the body of a program clause.
We express it in our system by setting Π = ∅ for the Goal Paramodulation and Equation
Resolution inference rule. We remove conditions 3 and 4 from the Superposition inference
rule, and remove condition 3 from the Goal Paramodulation inference rule. It is encoded
by the selection rule that selects a positive literal in any clause containing one.

We use the selection rule to build a model of the set of program clauses. The process is
similar to the model construction process in completeness proofs of SLD-resolution. We
create the model in levels. On level 0 we add the facts. Then on each succeeding level we
add all the consequences of the preceding level. But since we have equalities, we must
also add equational consequences. So the process is divided up into two steps. For each
level n we create Ln which contains all the equations at the head of a program clause
whose conditions are true at the previous level. Then we create Mn which contains all
the equational consequences of Ln. In this manner, we eventually add every equation
which is implied by the program clauses. We can use these levels to create an ordering
on the equations, so that as in the proof of SLD-resolution each goal clause Γ⇒ where Γ

Oriented Equational Logic Programming 31

is implied by the model and can be involved in an inference which yields a smaller goal
clause, as we will see in Section 4. In order for this to be the case, we only add equations
to Mn which are implied by some convergent subset R of Ln. Furthermore, the added
equation must be substitution reduced by R. Finally, in order to show that simplifications
reduce the size of an equation, we require that this R implies all the facts, since these are
the simplifiers. But we must be sure that this process eventually adds all the equations
which follow from the program clauses. For instance an equation A might follow from Ln
but not from a convergent subset of Ln. Therefore A will not be in Mn. However, since A
is an equational consequence of the program clauses, we must prove that A is added later
on in the model construction.

Definition 3.1. Let S be a set of ground equational Horn clauses. For n ≥ 0, let Ln
and Mn be sets of equations such that A ∈ Ln if and only if A ∈ Lm for some m < n or
there is a clause C = (Γ⇒ A) ∈ Gr(S) such that A is selected in C and Γ ⊆Mn−1. We
say that C produces A in Ln, or that C is productive. Let Mn be the set of all equations B
such that there is a set of equations R ⊆ Ln such that R |= L0, R |= B, R is reduced
and B is substitution reduced by R. Define L∞ =

⋃
n≥0 Ln, and M∞ =

⋃
n≥0Mn.

If n is the smallest number such that A ∈ Mn, we say level(A) = n. If A 6∈ M∞,
we say level(A) = ∞. We define an ordering ≺l on atoms by A ≺l B if and only if
level(A) < level(B) or else level(A) = level(B) and A ≺r B†.

We extend the orderings so they apply to atoms and clauses.

Definition 3.2. We extend ≺l to negative literals so that A ≺l ¬B if level(A) ¹l
level(B) and ¬A ≺l B if level(A) ≺l level(B). We identify ≺l with its multiset extension.
Then a clause Γ ⇒ ∆ is identified with the set ∆ ∪ {¬A | A ∈ Γ}. We extend the ≺r
ordering to ground clauses in the following way. If C = (Γ⇒ A) and D = (∆⇒ B) then
C ≺r D if and only if A ≺r B or else A = B and Γ ≺l ∆.

We illustrate the last two definitions on the following set of clauses.

1. ⇒ P (a, b)
2. P (x, b)⇒ Q(x, b)
3. Q(a, b)⇒ a ≈ b
4. Q(b, a)⇒

with a lexicographic path ordering based on the precedence P Âr Q Âr a Âr b.
In the sequel, we will only apply the model construction process to a set of clauses

which has been saturated by Superposition. If we use a selection rule that selects the
head of every program clause, then there is one inference among the program clauses in
this example:

Q(a, b)⇒ a ≈ b ⇒ P (a, b)
Q(a, b)⇒ P (b, b)

.

So for Definition 3.1, the set S is {⇒ P (a, b), P (x, b) ⇒ Q(x, b), Q(a, b) ⇒ a ≈
b,Q(b, a) ⇒, Q(a, b) ⇒ P (b, b)}. The goal clause Q(b, a) ⇒ is included in the set, even

† The ≺l ordering depends on S. If it is necessary to know what S is, we will say A ≺l B with respect
to S.

32 C. Lynch

though goal clauses are not used in the model construction. The set of all ground instances
of S, called Gr(S), is {⇒ P (a, b), P (x, b) ⇒ Q(x, b) [[x 7→ a]], P (x, b) ⇒ Q(x, b) [[x 7→
b]], Q(a, b)⇒ a ≈ b,Q(b, a)⇒, Q(a, b)⇒ P (b, b)}. The clause P (x, b)⇒ Q(x, b) [[x 7→ a]]
will sometimes be referred to as P (a, b)⇒ Q(a, b) in situations when the border between
the clause and the substitution is irrelevant.

We have assumed that all non-equational atoms are encoded by equations. So in this
example, any non-equational atom A can be read as A ≈ >. However, for readability, we
write it in its unencoded form.

Definition 3.1 puts all the facts into L0, therefore L0 = {P (a, b)}. We defined M0 to be
the set of all equations B which are implied by a convergent subset R of L0 such that B is
substitution reduced by R. For technical reasons, so as to show that simplification really
is a case of redundancy, we also require that R |= L0. In this case, we can let R = L0

and P (a, b) trivially follows from R. Therefore M0 = L0 = {P (a, b)}. In reality, M0 is a
set of ground instances. So it includes, for example, P (x, y) [[x 7→ a, y 7→ b]], because a
and b are irreducible by M0.

Next, L1 is the set of all equations which appear as the head of a clause C ∈ Gr(S)
whose conditions are inM0. So, L1 = {P (a, b), Q(a, b)}.Q(a, b) is added to the set because
of the clause P (a, b)⇒ Q(a, b). We can now set R = L1 and see that M1 = L1. The set L2

is {P (a, b), Q(a, b), a ≈ b, P (b, b)}, because of the clauses Q(a, b)⇒ a ≈ b and Q(a, b)⇒
P (b, b). In this case, we cannot set R = L2, since L2 is not convergent. We can set R =
{P (a, b), a ≈ b, P (b, b)}. This allows us to say that P (b, a) and P (a, a) are in M2. We can
set R = {Q(a, b} to show that Q(a, b) ∈M2. But Q(b, a) and Q(a, a) are not in M2 even
though they are logically implied by L2, because neither of them are implied by a con-
vergent subset of L2. Therefore, M2 = {P (a, b), Q(a, b), a ≈ b, P (b, b), P (b, a), P (a, a)}.
Finally, L3 = {P (a, b), Q(a, b), a ≈ b, P (b, b), Q(b, b)}, which is convergent. So, we can set
R = {P (b, b), Q(b, b), a ≈ b} and then M3 = {P (a, b), Q(a, b), a ≈ b, P (b, b),
P (b, a), P (a, a), Q(b, b), Q(b, a), Q(a, a)}. Additionally, L4 = L3, which means no further
equations are added to the model.

The model construction gives us an ordering on the atoms of: P (a, b) ≺l Q(a, b) ≺l a ≈
b ≺l P (b, b) ≺l P (b, a) ≺l P (a, a) ≺l Q(b, b) ≺l Q(b, a) ≺l Q(a, a). In the next section, we
will prove that L∞ is convergent. This is true in this example, because L∞ = L3, which
we have already noted is convergent. We also prove in the next section that if Γ⇒ is a
goal clause such that L∞ |= Γ, then there is an inference of Γ⇒ with a clause of S such
that a new smaller goal clause is produced.

We show the proof of Q(b, a) ⇒ in the above example. There is an inference with
clause 3 which produces Q(a, b), Q(b, b) ⇒. This is smaller than the original goal, be-
cause level(Q(a, b)) = 1 < 3 = level(Q(b, a)), and level(Q(b, b)) = level(Q(b, a)) but
Q(b, b) ≺r Q(b, a). Next there is an inference involving clause 2 with subgoal Q(a, b). The
resulting subgoal is P (x, b), Q(b, b) ⇒ [[x = a]]. This is smaller than the previous sub-
goal, because level(P (a, b)) = 0 and level(Q(a, b)) = 1. Next, an inference with clause 1
eliminates P (a, b) and results in the new subgoal Q(b, b)⇒. After that, an inference with
clause 2 again gives us P (x, b) [[x = b]], which is smaller because level(P (b, b)) = 2 and
level(Q(b, b)) = 3. Then an inference with Q(a, b) ⇒ P (b, b) gives us Q(a, b) ⇒. Again
we have reduced the level of the subgoal. Finally, we apply the same steps to Q(a, b) as
we did above, to eventually eliminate it.

Oriented Equational Logic Programming 33

4. Completeness

We define the notion of redundancy used in this paper. It is much more complicated
than the notion of .Bachmair and Ganzinger (1994), which says a clause is redundant if it
is implied by smaller clauses. This complexity is because the notion of redundancy must
be more restrictive than the usual notion. In Section 5, we show counterexamples which
show it is necessary to be this restrictive in order to preserve completeness.

Definition 4.1. A clause D is S–redundant w.r.t. D1, . . . , Dn if, for all ground in-
stances C of D, for all i, there exists a Ci which is an instance of Di such that, Ci ¹l C
with respect to S and C1, . . . , Cn |= C. Also

1. If C is a goal clause then C is of the form C ′ [[θη]] and we require that exactly
one Ci is a goal clause and it is of the form Ci

′ [[στ]] such that Dom(θ) ⊆ Dom(σ),
and for all variables x ∈ Dom(θ), xθ = xσ and xθη = xστ .

2. If C is a program clause, then C is of the form Γ⇒ A, and we require that

(a) each Ci is a program clause of the form Γi ⇒ Ai,
(b) A1, . . . , An |= A,
(c) for each i, Ci ¹r C, and
(d) for all R, Ci is substitution reduced by R whenever C is substitution reduced

by R.

A clause D is S–redundant in T if there exist clauses D1, . . . , Dn ∈ T such that D
is S-redundant w.r.t. D1, . . . , Dn. A clause D is strictly S-redundant in T if there exist
clauses D1, . . . , Dn ∈ T such that D is redundant w.r.t. D1, . . . , Dn and there is no Di

such that Di is redundant w.r.t. D, D1, . . . , Di−1, Di+1, . . . , Dn.

This definition allows for most of the redundancy notions used in practice, but not all
of them. For goal clauses, tautology deletion and simplification are allowed, and subsump-
tion is allowed when possible after a resolution with a unit clause. More general cases of
subsumption are not allowed if information is lost about the answer substitution.

The most important inference rule in practice is simplification. Fortunately, it is al-
ways possible to simplify a program clause and remove the simplified clause. This is not
immediately obvious by the above definition. When an equation is simplified, the result
is a new equation which is smaller with respect to ≺r, but it is not obvious that is is
smaller with respect to ≺l. However, it will be smaller with respect to ≺l, because we
have built that into the definition of the ordering. When the model is constructed in
Definition 3.1, an equation A is only added to Mn if there is some R ⊆ Ln such that
R |= A and R |= L0. Recall that when an equation is simplified, it must be simplified by
a unit equation. Therefore, if A is at level n, then a simplified version of A must have
been added to the model at or before level n. We refer the reader to Section 5 for a more
detailed discussion of redundancy.

Other redundant program clauses may not always be removed. Tautology removal is
possible in some cases. For instance, clauses of the form Γ ⇒ t ≈ t may be removed.
Clauses of the form A,Γ⇒ A may not be removed, because this violates condition 2(b)
in the above definition. For subsumption, a clause C may be removed if C is subsumed by
a clause D where D ⊆ C, but not in general. For instance, the clause P (a, a)⇒ P (a, b)
cannot be removed in the presence of the clause P (x, x)⇒ P (x, b) because this violates

34 C. Lynch

condition 2(d) of the definition of redundancy. In any case, clauses which are redundant
in the usual sense but not in our sense may by forbidden to be used in inferences involving
a goal clause, as given in the next definition. Again, the reader is referred to Section 5
for a more detailed discussion of redundancy.

Now we give some facts about redundancy to show that redundancy is not affected by
adding new clauses or deleting redundant clauses.

Proposition 4.1. Let S, T and T ′ be sets of clauses such that T ⊆ T ′. Suppose that D
is S-redundant in T . Then D is S-redundant in T ′.

Proof. If D is S-redundant in T , then there exist D1, . . . , Dn ∈ T such that D is S-
redundant w.r.t. D1, . . . , Dn. Since, T ⊆ T ′, D1, . . . , Dn ∈ T ′. So D is S-redundant in T ′.
2

Proposition 4.2. Let S be a set of clauses. Suppose that D is redundant w.r.t. D1, . . . , Dn

and D1 is redundant w.r.t. E1, . . . , Em. Then D is redundant w.r.t. E1, . . . , Em, D2, . . . , Dn.

Proof. Let C be an instance of D. Then for each i, 1 ≤ i ≤ n there is an instance Ci
of Di such that Ci ¹l C with respect to S and C1, . . . , Cn |= C. Also, for each j,
1 ≤ j ≤ m, there is an instance Fj of Ej such that Fj ¹l C1 with respect to S and
F1, . . . , Fm |= C1. By the transitivity of ¹l, we know that Fj ¹l C for all j. Also,
F1, . . . , Fm, C2, . . . , Cn |= C. We must show that one of the two cases in the definition of
S-redundancy applies.

1. If C is a goal clause then C is of the form C ′ [[θη]] and there is a goal clause
Ci ∈ {C1, . . . , Cn} of the form Ci

′ [[στ]] such that Dom(θ) ⊆ Dom(σ), and for
all variables x ∈ Dom(θ), xθ = xσ and xθη = xση. We must show that one of
F1, . . . , Fm, C2, . . . , Cn also has this property. If Ci ∈ {C2, . . . , Cn}, then Ci is in the
set. Otherwise, suppose that Ci = C1. Then there is a goal clause Fj ∈ {F1, . . . , Fm}
of the form Fj

′ [[σ′τ ′]] such that Dom(σ) ⊆ Dom(σ′), and for all variables x ∈
Dom(σ), xσ = xσ′ and xστ = xσ′τ ′. This implies that Dom(θ) ⊆ Dom(σ′), and for
all variables x ∈ Dom(θ), xθ = xσ′ and xθη = xσ′τ ′. Therefore Fj is the required
clause.

2. If C is a program clause, then C is of the form Γ⇒ A and

(a) each Ci is a program clause of the form Γi ⇒ Ai,
(b) A1, . . . , An |= A,
(c) for each i, Ci ¹r C, and
(d) for all R, Ci is substitution reduced by R whenever C is substitution reduced

by R.

We also know that

(a) each Fj is a program clause of the form ∆j ⇒ Bj ,
(b) B1, . . . , Bm |= C1,
(c) for each j, Fj ¹r C1, and
(d) for all R, Fj is substitution reduced by R whenever C1 is substitution reduced

by R.

This implies that

Oriented Equational Logic Programming 35

(a) each Fj is a program clause of the form ∆j ⇒ Bj ,
(b) B1, . . . , Bm, A2, . . . , An |= C,
(c) for each j, Fj ¹r C, and
(d) for all R, Fj is substitution reduced by R whenever C is substitution reduced

by R.

Therefore D is redundant w.r.t. E1, . . . , Em, D2, . . . , Dn. 2

Proposition 4.3. Let S, T and T ′ be sets of clauses such that T ⊆ T ′, and all members
of T ′ \T are S-redundant in T ′. If D is S-redundant in T ′, then D is S-redundant in T .

Proof. If D is S-redundant in T ′, then there exist D1, . . . , Dn ∈ T ′ such that D is
S-redundant w.r.t. D1, . . . , Dn. We know that each Di is either in T or is S-redundant
in T . By applying the previous proposition several times, we see that D is S-redundant
in T . 2

We also define redundant inferences.

Definition 4.2. An inference
C1

Cσ

is S–redundant in T if C1σ is strictly S–redundant in T .
An inference

C1 C2

Cσ

is S–redundant in T if C1σ or C2σ is strictly redundant in T , or if the inference is a
resolution or goal paramodulation inference and C1σ is not productive in T . We say a
clause is productive in T if some instance is productive in some set of clauses containing
Gr(T).

This definition implies that if a program clause C is implied by smaller clauses, then
a resolution or goal paramodulation inference involving C is redundant, even though C
may not be redundant.

In this section we prove the completeness of the inference system given in this pa-
per. The inference system is sound. To prove completeness, we use the definition of a
fair theorem proving derivation, meant to model an automated theorem prover .(from
Bachmair, 1991).

Definition 4.3. Let S0, Si, S2, . . . be a (finite or countably infinite) sequence of sets of
clauses. A clause C is said to be persisting if there exists some j such that for every
k ≥ j, there exists an identical clause C ′ ∈ Sk. The set of all persisting clauses, denoted
S∞, is called the limit of the derivation. A clause C in some Si is redundant if it is
S∞-redundant.

The sequence S0, S1, S2, . . . is called a theorem proving derivation if each set Si+1 can
be obtained from Si by adding a clause which is a consequence of Si or by deletion of a
clause C that is redundant in Si \ C.

A set of clauses S is saturated if every inference applied to clauses in S is redundant
in S. A theorem proving derivation is called fair if S∞ is saturated.

36 C. Lynch

From Propositions 4.1 and 4.3, it follows that if C is redundant in some Si then C is
redundant in S∞. In the sequel, we will use the notion of redundancy with respect to
S∞.

Now we present the completeness theorem of our inference rules, preceded by some
necessary lemmas. The first lemma shows that the goal paramodulation and equation
resolution inference rules reduce the size of the right premise, w.r.t. both orderings on
clauses.

Lemma 4.1. Let S = S∞ for some fair theorem proving derivation, from which the
sequences L0, . . . and M0, . . . have been constructed. Let C = (Γ⇒ Π) be a non-redundant
clause in Gr(S) with a negative selected literal, such that M∞ |= Γ. Then there is a
clause D = (Λ⇒ Π) in Gr(S) or redundant in Gr(S), such that Λ ≺l Γ and M∞ |= Λ.
Furthermore, if θ is the substitution part of C and σ is the substitution part of D, then
σ = θ|VG .

Proof. C must be of the form A,Γ′ ⇒ Π where A is selected. Suppose that A is of the
form t ≈ t. Then there must be a ground instance of an equation resolution inference.

t ≈ t,Γ′ ⇒ Π
Γ′ ⇒ Π

.

Then Γ′ ⇒ Π has the desired properties, and it is either an element of Gr(S) or is
redundant in Gr(S).

So suppose A is of the form u ≈ v, where u Âr v. If u ≈ v is at level m then there
must be a reduced set R′ ⊆ Lm such that R′ |= u ≈ v and u ≈ v is substitution reduced
by R′. So u ≈ v has a rewrite proof in Lm. Let s ≈ t be the first step of the rewrite proof
into u So s ≈ t is produced by some member ∆⇒ s ≈ t of S, where s ≈ t is substitution
reduced by R′. Then there is a ground instance of a goal paramodulation inference in S.

∆⇒ s ≈ t u[s] ≈ v,Γ′ ⇒ Π
u[t] ≈ v,∆,Γ′ ⇒ Π

.

We know that u[t] ≈ v is substitution reduced by R′ , because u[s] ≈ v and s ≈ t are
substitution reduced by R′. The only potential problem would be if s was of the form xθ
for some variable x, but then that variable would not appear in u[t] ≈ v. By definition
of ≺l, (u[t] ≈ v,∆,Γ′) ≺l (u[s] ≈ t,Γ′), because ∆ is at some level less than m and
u[t] ≈ v is at level m and smaller than u[s] ≈ v w.r.t. ≺r. Therefore u[s] ≈ v has been
replaced with smaller things w.r.t. ≺l. The equation u[t] ≈ v is in M∞. Also, note that
the substitution part of u[t] ≈ v,∆,Γ′ ⇒ Π is the same as the substitution part of C,
except that it may have some additional program variables. Therefore u[t] ≈ v,∆,Γ′ ⇒ Π
has the desired properties. It is either an element of Gr(S) or redundant in Gr(S). 2

In order to preserve completeness, we need to show that the model L∞, which we
constructed, is convergent. We next define how to create a reduced version of a set of
equations E. If that reduced version is logically equivalent to E, that will imply that E
is convergent.

Definition 4.4. Let E be a ground set of equations. Define RedVar(E) = {A ∈ E | A
is left-irreducible by R and A is substitution reduced by R}.

Oriented Equational Logic Programming 37

This definition is well defined, because the definitions of reduced and left irreducible
only use smaller equations.

Proposition 4.4. Let E be a set of ground equations. Let R ⊆ E such that R is con-
vergent and R ≡ E. Then E is convergent.

Proof. Every equation implied by E has a rewrite proof in R because R ≡ E. But
R ⊆ E, so this is also a rewrite proof in E. 2

A corollary of the proposition is that if RedVar(R) ≡ R then R is convergent. Note that
if R is reduced, then RedVar(R) = R. We will show that L∞ is equivalent to RedVar(L∞),
so we can use it in the model construction to show that all true equations are eventually
added to the model. But, in order to do that, we must show that RedVar(L∞) |= L0.

Lemma 4.2. Let S = S∞ for some fair theorem proving derivation from which the se-
quences L0, . . . and M0, . . . have been constructed. Let R = RedVar(L∞). Then R |= L0.

Proof. We will prove that if B ∈ L0 then there exists a B′ ∈ R such that B′ ≡R B.
Then R |= B. So R |= L0.

Suppose that ⇒ B′′θ produces B in L0 and is an instance of the clause ⇒ B′′ ∈ S.
Let θ′ = θ ↓R. Therefore, B′′θ′ is substitution reduced by R and B′′θ′ ≡R B.

Let C = (Γ ⇒ B′) be the smallest clause w.r.t. ≺r in Gr(S) such that Γ ⊆ M∞, B′

is substitution reduced by R, and B′ ≡R B. We have just shown there is at least one
such B′. C cannot be redundant, otherwise there would be a smaller clause with the
desired properties. If B′ is not selected, then by Lemma 4.1, there is a smaller clause
with the desired properties. We must prove that B′ is left-irreducible by R.

So suppose that B′ is selected in C and left-reducible by R. If B′ is an identity, then
R |= B′ Otherwise, B′ is of the form u[s] ≈ v, where u[s] Âr v and there is an equation
s ≈ t in R produced by ∆ ⇒ s ≈ t ∈ Gr(S), such that s ≈ t is substitution reduced
by R. So there is a ground instance of a superposition inference in S:

∆⇒ s ≈ t Γ⇒ u[s] ≈ v
∆,Γ⇒ u[t] ≈ v .

The equation u[t] ≈ v must be substitution reduced by R, because u[s] ≈ v and s ≈ t
are substitution reduced by R. By definition of ≺r extended to clauses, (∆,Γ ⇒ u[t] ≈
v) ≺r (Γ ⇒ u[s] ≈ v), because (u[t] ≈ v) ≺r (u[s] ≈ v). All members of ∆ and Γ are in
M∞. Finally, (u[t] ≈ v) ≡R (u[s] ≈ v) ≡R B. Again, we have a smaller clause than C
with the desired properties. If it was removed because of redundancy by C1, . . . , Cn, then
one of the Ci must have the desired properties. Therefore, B′ must be left-irreducible.
This proves that B′ ∈ R and B′ ≡R B. 2

Now we show that L∞ is convergent by showing that it is equivalent to its reduced
version. We do that by showing that every member of L∞ can be reduced to a member
in RedVar(L∞), by rewriting only with members of RedVar(L∞). Proving that L∞ is
convergent also implies that M∞ is convergent, because L∞ ⊆ M∞ and L∞ |= M∞ by
definition.

38 C. Lynch

Lemma 4.3. Let S = S∞ for some fair theorem proving derivation from which the se-
quences L0, . . . and M0, . . . have been constructed. Let R = RedVar(L∞). Then R ≡ L∞.

Proof. Let R = RedVar(L∞). Obviously, L∞ |= R, since R ⊆ L∞. We want to prove
that R |= L∞. We will prove that if B ∈ L∞ then there exists a B′ ∈ R such that
B′ ≡R B. Then R |= B. So R |= L∞ and L∞ is convergent by Proposition 4.4. The proof
is by induction on the size of B w.r.t. ≺l.

Suppose that Λ′θ ⇒ B′′θ produces B in Ln and is an instance of the clause Λ′ ⇒
B′′ ∈ S. Let θ′ = θ ↓R. We are allowed to do this, because we are assuming that the
substitutions in the program clauses have been instantiated. By induction, R |= Λ′θ′, and
Λ′θ′ is substitution reduced by R, so Λ′θ′ ⊆ M∞ because R is convergent by definition
and R |= L0 by Lemma 4.2. Also, B′′θ′ is substitution reduced by R and B′′θ′ ≡R B.

Let C = (Γ ⇒ B′) be the smallest clause w.r.t. ≺r in Gr(S) such that Γ ⊆ M∞, B′

is substitution reduced by R, and B′ ≡R B. We have just shown there is at least one
such B′. C cannot be redundant, otherwise there would be a smaller clause with the
desired properties. If B′ is not selected, then by Lemma 4.1, there is a smaller clause
with the desired properties. We must prove that B′ is left-irreducible by R.

So suppose that B′ is selected in C and left-reducible by R. If B′ is an identity, then
R |= B′. Otherwise, B′ is of the form u[s] ≈ v, where u[s] Âr v and there is an equation
s ≈ t in R produced by ∆ ⇒ s ≈ t ∈ Gr(S), such that s ≈ t is substitution reduced
by R. So there is a ground instance of a superposition inference in S:

∆⇒ s ≈ t Γ⇒ u[s] ≈ v
∆,Γ⇒ u[t] ≈ v .

The equation u[t] ≈ v must be substitution reduced by R, because u[s] ≈ v and s ≈ t
are substitution reduced by R. By definition of ≺r extended to clauses, (∆,Γ ⇒ u[t] ≈
v) ≺r (Γ ⇒ u[s] ≈ v), because (u[t] ≈ v) ≺r (u[s] ≈ v). All members of ∆ and Γ are
in M∞. Finally, (u[t] ≈ v) ≡R (u[s] ≈ v) ≡R B. Again, we have a smaller clause than C
with the desired properties. If it was removed because of redundancy by C1, . . . , Cn, then
one of the Ci must have the desired properties. Therefore, B′ must be left-irreducible.
This proves that B′ ∈ R and B′ ≡R B. 2

It is clear from our definition that every equation appearing in M∞ is a consequence
of program clauses in S, our initial set of clauses. We need to show that all the program
clauses are implied by M∞.

Lemma 4.4. Let S0 be a set of clauses, such that the sequences L0, . . . and M0, . . . are
constructed from S∞. Then M∞ implies all the program clauses in Gr(S∞).

Proof. Let C = (Γ ⇒ B) ∈ Gr(S0), such that Γ′ ⇒ B′ ∈ S0, Γ′θ = Γ and B′θ = B.
Suppose that M∞ |= Γ. We will show that M∞ |= B. Let θ′ = θ ↓M∞ . Then M∞ |= Γ′θ′

and Γ′θ′ is substitution reduced by M∞. So B′θ′ ∈M∞. This is by Lemma 4.3, because
M∞ ≡ RedVar(L∞). Therefore M∞ |= B. We have shown that M∞ implies all program
clauses in Gr(S0). Therefore M∞ implies all program clauses in Gr(S∞). 2

Finally, we can show that every true reduced goal reduces to an empty clause whose
substitution is a correct answer substitution. This will imply the completeness because
initially all clauses have the identity substitution, which is reduced.

Oriented Equational Logic Programming 39

Theorem 4.1. Let S0, . . . be a theorem proving derivation such that the sequences L0, . . .
and M0, . . . have been constructed from S∞. Let C = (Γ ⇒) [[θ]] ∈ Gr(S∞) such that
Γθ ⊆ M∞. Let VG be the set of goal variables. Then there exists a θ′ = θ|VG such that
2 [[θ′]] ∈ Gr(S∞). Furthermore, if (Λ ⇒) [[id]] ∈ S0 and M∞ |= Λσ, then 2 [[σ′]] ∈
Gr(S∞), for some σ′ = σ ↓M∞ |VG .

Proof. Let (Γ′ ⇒) [[θ′]] be the smallest clause (w.r.t. ≺l) such that θ′ = θ|VG and
M∞ |= Γ′θ′. By Lemma 4.1, if (Γ′ ⇒) [[θ′]] has a negative literal selected, then there is
a smaller clause with the required properties. Therefore, (Γ′ ⇒) [[θ′]] must be the empty
clause.

If (Λ⇒) [[id]] ∈ S0. and M∞ |= Λσ, then Λσ′ ∈M∞, therefore 2 [[σ′]] ∈ I(S∞). 2

This shows the completeness of the inference system with respect to answer substitu-
tions. The refutational completeness follows from that.

5. Deletion Rules

In this section we explain which deletion rules preserve completeness. We write deletion
rules in the form S ` T to indicate that a set of clauses S may be replaced by a set of
clauses T . We say that a deletion rule S ` T is correct if for each C ∈ T , S |= C and for
each C ∈ S \ T , C is redundant in S.

tautology deletion

S ∪ {Γ⇒ t ≈ t} ` S.

Proposition 5.1. Tautology Deletion is a correct deletion rule.

Proof. If C is a tautology of the form Γ ⇒ t ≈ t then C is redundant in any set S of
clauses. 2

The form of tautology deletion which removes a clause of the form A,Γ⇒ A does not
preserve completeness. The following example illustrates why such tautology deletions
are not allowed. For this example we assume an ordering such that b Âr c. For all the
examples in this section, we assume a selection rule such that the positive literal is
selected in each program clause.

Suppose we have:

1. ⇒ P (c, b, b)
2. P (c, c, b), P (c, b, c)⇒ b ≈ c
3. P (x, y, y)⇒ P (x, y, x)
4. P (x, y, y)⇒ P (x, x, y)
5. P (c, c, c)⇒.

The conclusion of every inference in this set of clauses is identical to an existing clause
or is a tautology. However, the set of clauses is unsatisfiable. If we keep the tautologies, we
can generate the empty clause, as we show below. This example shows that tautologies of

40 C. Lynch

the form A,Γ⇒ A may not be deleted. However, we may disallow goal paramodulation
and resolution inferences which have such a tautology as a premise. That is because such
a clause is not productive.

Now we show how the empty clause is generated if tautologies are kept. Tautologies
P (c, c, b), P (c, b, c) ⇒ P (c, c, b) and P (c, c, b), P (c, b, c) ⇒ P (c, b, c) are both created by
inferences between clauses 1 and 2. Then, an inference of either of these two clauses
with clause 2 gives us P (c, c, b), P (c, b, c) ⇒ P (c, c, c). This clause can then be used in
an inference with P (c, c, c)⇒ to generate P (c, c, b), P (c, b, c)⇒. Next, an inference with
clause 4 into P (c, c, b) gives us P (x, y, y), P (c, b, c)⇒ [[x = c∧ y = b]]. An inference with
clause 1 removes the first subgoal to give us P (c, b, c)⇒. Then we apply clause 3 to this
subgoal. The result is P (x, y, y) ⇒ [[x = c ∧ y = b]]. Resolving this with clause 1 gives
us the empty clause.

Subsumption can also be defined. However, we are only allowed to remove a clause
D [[θ]] if some clause C [[σ]] exists such that C ⊂ D and Cσ ⊆ Dθ, as opposed to the
usual form of subsumption where we can remove it if Cσ ⊆ Dθ.

subsumption

S ∪ {C [[σ]], D [[θ]]} ` S ∪ {C [[σ]]}

if C ⊆ D and Cσ ⊆ Dθ.

Proposition 5.2. Subsumption is a correct deletion rule.

Proof. If C [[σ]] and D [[θ]] are both program clauses or both goal clauses, C ⊆ D and
Cσ ⊆ Dθ, then D [[θ]] is redundant w.r.t. C [[σ]]. 2

If C and D are program clauses, then we could allow the deletion if some renaming
of C is a subset of D. The general form of subsumption, which allows the removal if
Cσ ⊆ Dθ is not complete, as we illustrate with the following example. In the example,
a Âr b.

Suppose we have:

1. ⇒ P (a, a)
2. P (a, a)⇒ a ≈ b
3. P (x, x)⇒ P (x, b)
4. P (x, x)⇒ P (b, x)
5. P (b, b)⇒

Every inference among this set of clauses results in a clause which is identical to an
existing clause or is subsumed by an existing clause. However, the set is unsatisfiable. If
the subsumed clauses are kept, then the empty clause is generated, as we show below. So
we cannot allow the deletion of a subsumed clause in general. However, we may disallow
a goal paramodulation or resolution inference if the program clause C in the inference is
subsumed, because C would not be productive.

We now show how to generate the empty clause if subsumed clauses are kept. Inferences
among clauses 1 and 2 generate P (a, a) ⇒ P (a, b) and P (a, a) ⇒ P (b, a). These clauses
are subsumed by clauses 3 and 4. If the clauses are kept, an inference between either

Oriented Equational Logic Programming 41

of these clauses and clause 2 gives us P (a, a) ⇒ P (b, b). Now it is easy to generate the
empty clause. An inference between this clause and P (b, b)⇒ gives P (a, a)⇒, which is
immediately refuted by ⇒ P (a, a).

We have defined subsumption so that a goal clause cannot subsume a program clause.
This is to preserve the property of answer substitutions. For instance, an empty clause
could then subsume everything, but it would only represent one answer substitution.

All simplifications are allowed.

simplification

S ∪ {C[sσ] [[θ]],⇒ s ≈ t} ` S ∪ {C[tσ] [[θ]],⇒ s ≈ t}.

We could also present a blocking rule, as in .Bachmair et al. (1995), to say that clauses
with reducible substitutions may be deleted.

The proof that simplified clauses may be deleted is not as simple as the proof of the
other deletion rules. We must prove that the deleted clause is redundant.

Proposition 5.3. Simplification is a correct deletion rule.

Proof. We need to show that C[sσ] [[θ]] is redundant in any set of clauses containing
C[tσ] [[θ]] and s ≈ t. Conditions 1 and 2 are satisfied by definition. But it is necessary to
prove that C[tσ] [[θ]] ≺l C[sσ] [[θ]].

For each instance C ′ of C[sσ] [[θ]], there is a corresponding instance D of C[tσ] [[θ]]
which implies C ′ in combination with the corresponding instance s′ ≈ t′ of s ≈ t. Suppose
that level(C ′) = n where n is a non-negative integer or n =∞. Obviously, D ≺r C ′ and
s′ ≈ t′ ≺r C ′. Since s′ ≈ t′ is a fact, we know that level(s′ ≈ t′) = 0. Therefore,
s′ ≈ t′ ≺l C ′. In order to show that D ≺l C ′, we must show that level(D) ≤ n.

Since level(C ′) = n, there is a convergent set of equations R ⊆ Ln such that R |= L0,
R |= C ′ and C ′ is substitution reduced by R. Since C ′ is substitution reduced by R, D
also must be substitution reduced by R.

The equation s′ ≈ t′ might not be substitution reduced by R, but let A be the result
of reducing the variables of s′ ≈ t′ by R. Then s′ ≈ t′ is implied by R ∪ A. This implies
that all equations in A are at a level less than or equal to n. Since all equations of R
are also at a level less than or equal to n, and R ∪ A |= D, we know that level(D) ≤ n.
Therefore D ≺l C ′. 2

6. Conditional Narrowing

The result of this paper can be applied to Conditional Narrowing. Basic Conditional
Narrowing can be viewed as the restriction of our inference system to the Goal Paramod-
ulation and Equation Resolution inference rule. It is called Conditional Narrowing if we
allow paramodulation into substitution positions, but no other variable positions. Con-
ditional Narrowing is not complete in general for equational Horn clauses, but we have
proved that it is complete if the set of program clauses is saturated by Superposition†.

Now we compare our result with related results on Conditional Narrowing. First we

† We are specifically referring to the selection rule which selects positives in program clauses, although
this is true for any selection rule.

42 C. Lynch

need some notation. Let Var(t) be the set of variables in t, for any object t. Let C =
(Γ ⇒ s ≈ t) be a program clause. C is type 1 if Var(Γ) ∪ Var(t) ⊆ Var(s), type 2 if
Var(t) ⊆ Var(s), and type 3 if Var(t) ⊆ Var(s) ∪Var(Γ). Let S be a set of clauses. For
all i, S is of type i if C is of type i for all C ∈ S. Let R0 be the set of equations appearing
as facts in S and let Rn be the set of equations A such that there is an equation Γ⇒ A
in Gr(S) such that Rn−1 |= Γ. Let R∞ =

⋃
n≥0Rn. S is convergent if R∞ is convergent.

S is level-convergent if each Rn is convergent. We compare this with the similar sets
constructed in Definition 3.1. It is evident that Mn ⊆ Rn for all n. We have proved that,
if the set of clauses is saturated by Superposition, then M∞ ≡ R∞.

Conditional narrowing is complete for convergent sets of type 1 .(Kaplan, 1984), level-
convergent sets of type 2 .(Giovanetti and Moiso, 1986), and level-convergent sets of
type 3 .(Middledorp and Hamoen, 1994). It is not complete for convergent sets of type
2 .(Giovanetti and Moiso, 1986). Basic Conditional Narrowing is complete for level-
convergent sets of type 2 .(Giovanetti and Moiso, 1986), but not complete for convergent
sets of type 1 .(Middledorp and Hamoen, 1994) (see .Middledorp and Hamoen (1994) for
a good exposition of all these results). In this paper we showed that Basic Conditional
Narrowing is complete for sets which are saturated by Superposition. A big advantage
of our result is that we require no restrictions on where variables appear, as needed in
all previous results. A set saturated by Superposition is convergent but not necessarily
level-convergent. For instance, consider the example given earlier in the paper:

1. ⇒ P (a, b)
2. P (x, b)⇒ a ≈ c
3. Q(a, b)⇒ a ≈ b
4. Q(a, b)⇒ P (b, b)

This is saturated by superposition. However, suppose we construct each Ri. Then
R0 = {P (a, b)}, R1 = {P (a, b), Q(a, b)}, R2 = {P (a, b), Q(a, b), a ≈ b, P (b, b)}, and
R4 = {P (a, b), Q(a, b), a ≈ b, P (b, b), Q(b, b)}. Note that R3 is not convergent, since it
contains Q(a, b) and a ≈ b, but not Q(b, b).

The condition of being saturated by Superposition is a natural condition. It seems to be
the natural way to test the other convergence conditions anyway. Another advantage of
our method is that there is an algorithm to create the condition for completeness of Basic
Conditional Narrowing: saturate the set by Superposition. This is also the case for the
methods of .Dershowitz (1991), .Nieuwenhuis and Nivela (1991); .Bachmair and Ganzinger
(1994); .Bachmair et al. (1995); .Kounalis and Rusinowitch (1988); .Rusinowitch (1988);

.Hsiang and Rusinowitch (1991); .Pais and Peterson (1991); .Bachmair and Ganzinger
(1990), which are special cases of our general framework.

The following example from .Middledorp and Hamoen (1994) illustrates why a set
saturated by Superposition is different from a convergent set:

1. ⇒ a ≈ b
2. ⇒ a ≈ c
3. x ≈ b, x ≈ c⇒ b ≈ c
4. b ≈ c⇒

This set is convergent but, as .Middledorp and Hamoen (1994) show, Conditional Nar-
rowing is not complete for this set. However, our inference rules would force an inference

Oriented Equational Logic Programming 43

between the first two clauses to create the clause ⇒ b ≈ c. Then it is saturated by
Superposition, and Conditional Narrowing is complete.

7. Conclusion

In this paper, we have given a new general framework to prove completeness results
for theorem proving and logic programming with horn clauses with equality. The usual
concept of a selection rule is extended to program clauses. Then we use the selection
rule to define a schema of inference rules. The schema encompasses previously known
complete inference systems for Horn clauses, as we detail in Section 3. Additionally, we
show that the schema includes an inference system conjectured complete by Fribourg, and
also covers some new inference systems. The system of Fribourg is especially interesting,
because heads of program clauses cannot be used in an inference with a condition of
another clause. Thus the inference system is a combination of a bottom up completion
process and a top down goal solving process. The completeness proof of our inference
rules is especially interesting, because it was necessary to develop new techniques, since
the old techniques only work for specific instances of the schema. Our results are also
interesting because of the connection with previous work on Conditional Narrowing. In
Section 6, we detail the relationship between our work and previous work in this area.

We can use the idea of selection rule to relate completeness results on Horn clauses
with equality to completeness results on general clauses with equality. Previously, every
selection rule complete for Horn clauses with equality was also a complete selection rule
for general clauses with equality. We extend the notion of selection rules to map to sets
of literals, so that for a selection rule Sel and a clause C, Sel(C) is a non-empty subset
of C. Then any inference with C must involve one of the literals in this set. A literals L
is maximal in a clause C if L is in C and there is no L′ in C such that L′ > L. Let F be
the set of all selection rules such that if Sel ∈ F and C is a clause, then either

1. Sel(C) is a set consisting of one negative literal in C, or
2. Sel(C) is the set of all maximal literals in C.

For general clauses, the best result on selection rules is from .Bachmair et al. (1995).
That inference system is complete when using a selection rule in F . However, it is not
known to be complete for any selection rule outside of F . This was previously also the
best known result for Horn clauses with equality. In this paper, we have improved the
result for Horn clauses. In the above notation, we have shown that Basic Superposition
for Horn Clauses is complete for every selection rule, since completeness for one literal
selected in each clause implies completeness for more than one literal selected. This is an
improvement, because the selection rule that selects a positive literal in each program
clause is not included in F .

However, for some of the selection rules proved complete in this paper, there is no
natural extension to first order logic with equality that is complete. For instance, consider
the selection rule that selects a positive literal for each clause containing one, otherwise
selects a negative literal (as in SLD resolution). That rule would be useful in the first order
case, because it would give a selection rule for paramodulation that is somewhat goal
directed but still uses rewrite techniques. Unfortunately, we have a counterexample which
shows that even the most general extension of this selection rule to first order logic is not
complete. Consider a selection rule on general clauses which selects all positive literals

44 C. Lynch

in a clause which contains positive literals and some negative literal otherwise. Consider
the following set of clauses, where the selected literals are underlined:

1. ¬p ∨ r
2. ¬q ∨ p
3. ¬r ∨ q
4. ¬p ∨ ¬q
5. ¬q ∨ ¬r
6. ¬r ∨ ¬p
7. p ∨ q ∨ r.

This set is unsatisfiable, but we cannot generate the empty clause, even if we keep
tautologies. The reader will notice that the conclusion of every inference is subsumed by
the original set, so the empty clause will never be generated. Since the extension of this
strategy to a Resolution-based inference system is not complete, we are now considering
an extension of this strategy to a Model Elimination inference system.

In this paper, we have given a method of applying Basic Paramodulation to Horn
clauses with equality. All previous results are bottom-up, data-driven inference systems,
or else they do not admit ordered completion and simplification techniques. We give
a method of combining a bottom-up inference system with a top-down, goal-directed
inference system (like SLD resolution). We believe the goal-directedness of our strategy
will make it perform better in practice. We have presented the inference system in an
abstract setting which should make it possible to combine it with other theorem proving
strategies, like the redex restrictions from .Bachmair et al. (1995). One practical problem
with our method (as in SLD-resolution) is that the goal-directedness might blow up the
search space. However, in a recent result .(Lynch, 1995), we give a practical method to
prevent this blowup and to restrict the search space drastically.

Acknowledgements

Thanks go to Michaël Rusinowitch, Wayne Snyder, and Claude Kirchner for helpful
discussions, and Leo Bachmair for pointing out an error in one of the definitions.

References
.—.—Bachmair, L. (1991). Canonical Equational Proofs. Boston, MA: Birkhauser Boston, Inc.
.—.—Bachmair, L., Dershowitz, N., Plaisted, D. (1989). Completion without failure. Resolution of Equations

in Algebraic Structures 2, pp. 1–30.
.—.—Bachmair, L., Ganzinger, H. (1990). On restrictions of ordered paramodulation with simplification. In

Proc. 10th Int. Conf. on Automated Deduction, LNCS, vol. 449, pp. 427–441, Berlin: Springer-
Verlag.

.—.—Bachmair, L., Ganzinger, H. (1994). Rewrite-based equational theorem proving with selection and sim-
plification. J. Logic and Computation 4(3):217–247.

.—.—Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W. (1992). Basic paramodulation. In Proc. 11th Int.
Conf. on Automated Deduction, Lect. Notes in Artificial Intelligence 607, pp. 462–476, Berlin:
Springer-Verlag.

.—.—Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W. (1995). Basic paramodulation. Information and
Computation 121(2):172–192.

.—.—Brand, D. (1975). Proving theorems with the modification method. SIAM J. Computing 4(4):412–430.

.—.—Dershowitz, N. (1991). A Maximal Literal Unit Strategy for Horn Clauses. Proc. 2nd Int. Workshop on
Conditional Term Rewriting Systems, LNCS, vol. 516, pp. 14–25.

.—.—Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite Systems. In J. van Leeuwen, ed., Handbook of Theoretical
Computer Science B: Formal Methods and Semantics, pp. 243–320. Amsterdam: North-Holland.

Oriented Equational Logic Programming 45

.—.—Fribourg, L. (1984). Oriented equational clauses as a programming language. J. Logic Programming
1(2):165–177.

.—.—Giovanetti, E., Moiso, C. (1986). A Completeness Result for E-Unification Algorithms based on Condi-
tional Narrowing. In Proc. of the Workshop on Foundations of Logic and Functional Programming,
LNCS, vol. 306, pp. 157–167

.—.—Hullot, J.-M. (1980). Canonical forms and unification. In Proc. 5th Int. Conf. on Automated Deduction,
LNCS, vol. 87, pp. 318–334, Berlin: Springer-Verlag.

.—.—Hsiang, J., Rusinowitch, M. (1991). Proving refutational completeness of theorem proving strategies: The
transfinite semantic tree method. J. Association for Computing Machinery 38 pp. 559–587.

.—.—Kaplan, S. (1984). Conditional rewrite rules. Theoretical Computer Science 33(2):175–193.

.—.—Kirchner, C., Kirchner, H., Rusinowitch, M. (1990). Deduction with symbolic constraints. Revue Francaise
d’Intelligence Artificielle 4(3):9–52.

.—.—Kounalis, E., Rusinowitch, M. (1988). On Word Problems in Horn Logic. Proc. 1st Int. Workshop on
Conditional Term Rewriting Systems, LNCS, vol. 308, pp. 144–160.

.—.—Lynch, C. (1995). Paramodulation without duplication. In Proc. 10th Int. IEEE Symp. on Logic in
Computer Science, San Diego.

.—.—Middledorp, A., Hamoen, E. (1994). Completeness Results for Basic Narrowing. Applicable Algebra in
Engineering, Communication and Computing 5:213–253.

.—.—Nieuwenhuis, R. (1995). On Narrowing, Refutation Proofs and Constraints. In Proc. 6th Int. Conf. on
Rewriting Techniques and Applications, LNCS, vol. 914, pp. 56–70. Berlin, Springer-Verlag.

.—.—Nieuwenhuis, R., Nivela, P. (1991). Efficient deduction in Equality Horn Logic by Horn-completion.
Information Processing Letters 39 pp. 1–6.

.—.—Nieuwenhuis, R., Rubio, A. (1992). Basic Superposition is Complete. In Proc. European Symposium on
Programming, Rennes, France.

.—.—Nieuwenhuis, R., Rubio, A. (1995). Theorem proving with ordering and equality constrained clauses.
J. Symbolic Computation 19(4):321–352.

.—.—Pais, J., Peterson, G. (1991). Using forcing to prove completeness of resolution and paramodulation.
J. Symbolic Computation 11:3–19.

.—.—Robinson, G.A., Wos, L.T. (1969). Paramodulation and theorem proving in first order theories with
equality. In B. Meltzer, D. Michie, eds, Machine Intelligence 4 pp. 133–150. New York, American
Elsevier.

.—.—Rusinowitch, M. (1988). Theorem-proving with resolution and superposition: an extension of Knuth and
Bendix procedure to a complete set of inference rules. In Proc. International Conference on Fifth
Generation Computer Systems.

.—.—Snyder, W., Lynch, C. (1991a). An Inference System for Horn Clause Logic with Equality. Proc. 2nd Int.
Workshop on Conditional Term Rewriting Systems, LNCS, vol. 516, pp. 454–461.

.—.—Snyder, W., Lynch, C. (1991). Goal directed strategies for paramodulation. In Proc. 4th Int. Conf. on
Rewriting Techniques and Applications, LNCS, vol. 488, pp. 150–161, Berlin: Springer-Verlag.

