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Abstract

The resolution (and paramodulation) inference sys-
tems are theorem proving procedures for first-order
logic (with equality), but they can run exponentially
long for subclasses which have polynomial time de-
cision procedures, as in the case of SLD resolution
and the Knuth-Bendiz completion procedure, both n
the ground case. Specialized methods run in poly-
nomial time, but have not been extended to the full
first-order case. We show a form of Paramodulation
which does not copy literals, which runs in polynomial
time for the ground case of the following four sub-
classes: Horn Clauses with any selection rule, any set
of Unit Equalities (this includes Completion), Fqua-
tional Horn Clauses with a certain selection rule, and
Conditional Narrowing.

1 Introduction

Since the early 1960’s, automated deduction has
been a popular topic of research. Resolution remains
the most popular method, along with its extension to
equality of Paramodulation [20]. Methods have been
developed to restrict the search space of Resolution
and Paramodulation proof procedures, and new the-
orem proving procedures have been developed. Much
of this research has been to make the theorem prover
more efficient. The main technique of showing the ef-
ficiency of a theorem prover is to compare 1t with an-
other prover on a few test problems, with some recent
emphasis to develop a database of test problems.

During this same period of time, the field of Anal-
ysis of Algorithms has been developed to compare the
running time of different algorithms. The complexity
of running times of Automated Theorem Provers is
not analyzed, because the problem of theorem prov-
ing is undecidable. However, some methods have been
developed to solve certain important classes of formu-
las in polynomial time. One way to show efficiency
of a general theorem prover would be to show that

it decides these important classes in polynomial time.
Up until now, these classes have only been polynomi-
ally decided by specialized procedures which have not
been extended to more general settings. Resolution
and Paramodulation are exponential for these classes.
This paper shows how special data structures can be
used to make Resolution and Paramodulation run in
polynomial time on these classes, while not requiring
the inference system to use special strategies.

One class which can be decided in polynomial time
is the class of propositional Horn Clause formulas.
Goal—directed strategies are useful in theorem prov-
ing. In an important recent paper, Plaisted [17, 18]
has examined the behavior of many general purpose
goal—directed theorem proving methods on this class.
His conclusion is that the only strategies which are
polynomial are those strategies which use methods to
save goals as they are solved and avoid repeatedly solv-
ing them. These techniques generally only work for
Horn clauses and not for first order logic. Plaisted
showed that only the MESON and Model Elimina-
tion strategies [9] with unit lemmas and caching [1],
the simple and modified problem reduction formats
[15, 16] and the Hyper—linking strategy [8] are poly-
nomial. However, the first two of these strategies (with
caching) are not complete for first—order logic; the sec-
ond two are inefficient on non—Horn clauses, and have
not been extended to equality. He also notes that
none of the resolution strategies are polynomial, and
suggests that maybe SLD-resolution should be based
on another strategy. We note that caching methods
(often called memoing) [22, 23] have been applied to
SLD-resolution, but the technique is not complete for
non—Horn clauses. Local Simplification [10] is a gen-
eral strategy for first-order equational theorem prov-
ing that always has polynomial size proofs in the case
of SLD-resolution of ground clauses, but the search



space is exponential.!

Knuth—Bendix completion is a method to convert
a set of equations to an equivalent canonical set. It
corresponds to paramodulation in the case where all
clauses are positive unit equalities. Polynomial time
algorithms, based on congruence closure, have been
given to convert a set of equations without variables
into an equivalent canonical set in polynomial time
[5, 21], but these algorithms are not Completion and
do not work when the equations contain variables. Re-
cently, it has been shown that ground completion with
structure sharing i1s polynomial if a strategy is used
which applies critical pairs in a certain order [19].

In this paper, we define a method of performing
paramodulation without copying literals. The terms
are stored in a hypergraph. To perform resolution or
paramodulation a hyperedge is added to the graph.
The hyperedge 1s labelled by the unification problem.
Therefore, many inferences are performed simultane-
ously. The graph can store exponentially many clauses
and exponentially large clauses in a polynomial space.
It can also store infinitely many clauses in a finite
space. In some sense, it can be seen as an exten-
sion of the caching technique for logic programming
and the congruence closure technique for completion
to the general first order case. The Clause Graph Res-
olution method [7] superficially resembles our method,
but it copies literals, so it does not have a polynomial
search space for the above cases. The Clause Graph
Resolution method was developed to improve the ef-
ficiency of processes such as finding literals to unify,
and those techniques can be applied equally well here.

The format of this paper is as follows. In section
2, we give some definitions. Then in section 3 we ex-
plain how clauses are represented in Paramodulation
without Duplication (PWD). In section 4, we explain
how inferences cause edges to be added to the graph.
In section 5, we show the complexity results of this
method, all for classes without variables. Specifically
we show that the search space of PWD is polynomial
for the class of Horn Clauses for any selection rule, in-
cluding goal—directed selection rules. This differs with
caching results mentioned above which are only com-
plete for certain kinds of goal-directed selection rules
like the left—to-right strategy of PROLOG. We show
the search space is polynomial for the class consisting
of only unit equalities and disequalities. This shows
that it 1s polynomial for completion. The search space
is also polynomial for conditional narrowing,? and for

1The existence of polynomial-sized proofs has been studied
by Haken[6] and others but Automated Deduction researchers
are concerned with the efficiency of searching for a proof.

?See [11] for an explanation of this class.

Equational Horn Clauses under certain selection rules.

2 Preliminaries

Our setting is equational clauses. We have predi-
cate symbols, function symbols and variables. A term
is a variable or an n—ary function symbol applied to n
terms. A literal is an n—ary predicate symbol (possi-
bly negated) applied to n terms. The equality symbol
& 1s a special binary predicate symbol, represented in
infix notation. The negation of & is written as . An
unconstrained clause is a digjunction of literals, also
viewed as a multiset. An object without variables is
ground. The empty clause is denoted by O. Let F
be the set of equality axioms, 1.e., the axioms for re-
flexivity, symmetricity, transitivity, and substitution
of equals for equals. A set of clauses S is satisfiable if
S U E has a model, otherwise S is unsatisfiable.

We use the usual definitions of Automated Deduc-
tion (see [9]). A substitution is a function from the set
of variables to the set of terms, that is almost every-
where the identity. A substitution is identified with
the homomorphic extension of itself. Composition of
substitutions ¢ and @ is defined so that tef = (to)@ for
all . A substitution is a renaming substitution if it is
a 1-1 function whose codomain is the set of variables.
We assume that all the variables that have appeared
are renamed to fresh variables (variables that have not
appeared).

We use the symbol = as a syntactic equality symbol.
An equational constraint is a conjunction of syntactic
equalities. A solution of an equational constraint is a
substitution. Every substitution ¢ is a solution of T.
o 1s a solution of s = ¢ if and only if so = to. o is
a solution of ¢ A @2 if and only if ¢ is a solution of
1 and o 1s a solution of py. A constrained clause is a
pair of an unconstrained clause C' and an equational
constraint ¢ represented as C'[¢]. The ground clause
Cois an instance of C'[¢] if o is a solution of . The
clause Cy [ 1] is a variant of Cy 2] if C1 [¢1] and
C5 [ p2] have the same instances.

Given a clause C, a selection rule 1s a function from
C[6] to a set of literals T' C C. If A is in T, we
say that A is selected in C'[0]. We assume a well-
founded reduction ordering <, total on ground terms,
identified with its multiset extension. We call a literal
A mazimal in C'[0] if A € C and there is a solution
o of 6 such that Ac > Bo for all B € C.

We now present the Basic Paramodulation infer-
ence rules [4, 13]. They differ from the standard
Paramodulation inference rules in that the most gen-
eral unifier is not applied to the conclusion of the infer-
ence. Instead, it is saved as an equational constraint in
the conclusion of the inference. This is more restrictive



than the standard inference rules, because disallowing
paramodulation inferences into variables corresponds
to never allowing a paramodulation inference into a
substitution position. A clause may be removed when
its equational constraint is not satisfied.

Our presentation of Basic Paramodulation differs
from the standard presentation, since we explicitly
give the renaming substitution that must be applied
to at least one of the premises of the inference. Nor-
mally, it 1s just assumed that the clauses are renamed.
However, since the handling of the renaming is very
important in PW D, we explicitly state it here to clar-
ify its use.

Resolution

r'vA[6:] -A"VA[0:]
TypVA[An= A" AbinAb:]

where A is selected in T'V A6, ], - A’ is selected in
-A"V A[#62], and 5 is a new renaming substitution.
Note that 5 is only applied to the left premise.

Positive Factoring

TVAVAI[l]
TVA[A= A NO]

where A’ is selected in TV AV A'[0].

Basic Paramodulation

Tvsat[6] Lis'IVAT6:]
TV IL[tnVAsp=s ANbinAba]

where s’ Is not a variable, s & ¢ is selected in I' V s &
t16:], L[s'] is selected in L[s'|VA[0:],s £, if L[s]
Is a disequation then s’ appears on a maximal side of
the disequation, if L[s’] is of the form u[s’] & v then
u[s'] is maximal in {u[s'], v} or some ground instance
vo of v 18 identical with a ground instance wo of one
side of an equation in A3, and 5 is a new renaming
substitution.

Equation Resolution

s#tVvI[I]
I[s=tAf]

where s % ¢ is selected in s &t VI [0].

Let Sel™* be a selection rule that selects all maxi-
mal literals in each clause. Let Sel™ be a selection rule
that selects a negative literal in each clause containing

3This is called Merging Paramodulation in [3]. We prefer it
to Equational Factoring for this formalism.

one, otherwise selects all maximal literals. Let Selt
be a selection rule which selects all positive literals in
each clause containing one, otherwise selects a nega-
tive literal. Let Sel be a selection rule which selects
one literal in each clause. Then BP™?" is the set of
the above inference rules with selection rule Sel”%*
BP~ the above set with Sel~, BPt the above set with
SelT, and BP the above set with Sel. Note that the
completeness of BP on a class implies the complete-
ness of the more specific inferences systems. Similarly,
any class where BP has a polynomial search space im-
plies a polynomial search space for the other inference
systems.

We can define a notion of redundant [3], so that a
clause may be removed when it is redundant. This is a
general notion that implies practical deletion methods
like demodulation and subsumption. Here we state a
property that is necessary to hold for redundancy to
preserve completeness. If C'[#] is a clause and S is
a set of clauses, then C'[0] is redundant in S if for
every ground instance D of C'[@] there exist ground
instances C, - - -, Cy, of S such that Cy A -+ ACY, logi-
cally implies D and for all i, C; < D and Cj is reduced
relative 16 D.* In practice, we use whichever forms of
redundancy are useful. For example, in some instances
of the above inferences, the addition of the conclusion
of the inference implies that one of the premises of the
inference is redundant. These cases of redundancy are
easy to detect and quite useful to perform in practice.

A theorem proving derivation models an automated
theorem prover [2]. Tt is used to prove soundness and
completeness results, but we have extended it to refer
to complexity. If I is an inference system and S is
a set of clauses, then an I-inference from S is an in-
stance of one of the inferences in I, where the premises
are clauses in S. A sequence Sp, S, 5%, - of sets of
clauses is called an I-theorem proving derivation from
Sp if every S;y1 is obtained by adding the conclusion of
an I-inference from S; or deleting a redundant clause
in S;. No inference is performed twice in the sequence.
Furthermore, every I—inference applied to clauses in
Sec = UizoﬂjZiSJ i1s redundant in S.,. If the se-
quence is of the form Sy, Sy, 52, --,5, we say that
the length of the sequence is n. Otherwise we say that
the length of the sequence is co. A class is defined to
be a set of sets of clauses. For a class C and a function
f, we say that the length of I over C s bounded by f if
for all Sy € C, the longest I-theorem proving deriva-
tion from Sp has length less than or equal to f(n)
where n is the number of symbols in Sy. An inference
procedure I decides a class C if the length of I over

*See [4] for a definition of reduced relative to.



C 1s bounded by some function f and there is some
recursive procedure to calculate each S;11 from S; for
each such sequence. An inference procedure I polyno-
mially decides C if the length of I over C is bounded
by a polynomial f and S;;1 can be calculated from S;
on each such sequence in polynomial time.

An inference system [ is sound if for any I-theorem
proving derivation from a satisfiable Sy, O &€ So,. [ is
complete if for any I-theorem proving derivation from
an unsatisfiable Sy, O € So.

Let HC be the class of all sets of ground horn clauses
without equations. Let HCE be the class of all sets of
ground horn clauses with equations. Let UE be the
class of all sets of ground equational clauses with just
one literal per clause. Let CA® be the class of all
sets of ground horn clauses such that every Paramod-
ulation inference among positive literals of any two
clauses is redundant.

Theorem 1 The inference rules BP™% [/ 13] and
BP~ [}] are sound and complete. BP [11] (and there-
fore also BP™T) is sound but only complete for HCE
and s subclasses.® None of the given inference sys-
tems polynomially decides HCE, UE or CN. Only
BP~ polynomially decides HC (see [17, 18] for more
details).

The classes which cannot be polynomially decided
by these general inference systems do have special-
ized inference procedures which polynomially decide
them. The inference system BPT is especially impor-
tant, because it is a goal-directed inference system for
HC and CN'. BP*t on HC is called SLD-resolution.
In this paper we show how clauses can be represented
so that BP polynomially decides HC and UE and so
that BP~ polynomially decides HCE and BPY poly-
nomially decides CN .

3 Clause Representation

Now we show how to represent the set of clauses as
a directed hypergraph G, so that literals and terms are
not copied when inferences are performed. Each clause
in the initial set of clauses is represented as a tree (or
dag) in the usual way. The result of an inference will
be to add a new hyperedge to the graph, labelled by
an equational constraint and a renaming (as in Basic
Paramodulation). This will make it easy to read off
the clauses from the hypergraph.

The vertices of the graph are labelled with sym-
bols from the language. Each vertex is labelled with a

5CN stands for conditional narrowing.

8In [11], the substitutions are required to be applied to
clauses with positive literals, and examples are given which show
that the definition of redundancy must be modified.

variable, constant, function symbol, predicate symbol,
negated predicate symbol, or the symbol V.

All edges in the graph are directed. There are two
kinds of edges: subterm edges and replacement edges.
Each subterm edge is labelled by an integer. If the
source of a subterm edge 1s labelled by an n—ary sym-
bol, then it will have n subterm edges directed out of
it, labelled by each of the integers from 1 to n, indicat-
ing the index of the subterm. The subterm edges are
used to represent the set of clauses that we want to
perform inferences on. For example the set of clauses
P(a,b) Vv f(c,d) m e is represented by the following
graph.

\
1 2
P ~
A 1 2
a b f €
VAN
c d

Figure 1: Initial set of clauses

Note in this example that the V symbol is assumed
to be binary for this clause, although it may appear
elsewhere in the graph with a different arity. The arity
for & is always 2.

The replacement edges are added to the graph when
inferences are performed. FEach replacement edge is
labelled with a renaming substitution and a path. A
path is a sequence of edges < ey, -+, e, > so that for
each ¢ < n, the target of e; is the source of e;41. We
use II for paths and the comma is overloaded, so that
< e, > refers to the path II with e added to the
beginning and < IIy, Iy > indicates II; concatenated
with II;. The path is only necessary for Paramodula-
tion. It is not necessary for Resolution or Completion.
The source of a replacement edge is labelled by a func-
tion symbol, constant or (usually negated) predicate
symbol. Replacement edges are of two types: rewrite
edges and resolution edges. The target of a rewrite
edge is always labelled by a function symbol, constant
or variable. The target of a resolution edge is labelled
by a (possibly negated) predicate symbol.

Subterm edges are grouped together as subterm hy-
peredges. A subterm hyperedge i1s a set of subterm
edges with the same source, such that if the source is



labelled with an n—ary symbol then there are n edges
in the set labelled with the integers from 1 to n. In an
initial graph, every edge has one subterm hyperedge
leading from it, except the nodes labelled by constants,
variables, and O-ary predicate symbols (see Figure 1).

Replacement edges are also grouped together as re-
placement hyperedges. A replacement hyperedge is a
set of replacement edges with the same source. A re-
placement hyperedge will contain at most one rewrite
edge. Each replacement hyperedge is labelled with an
equational constraint. When a critical pair inference
is performed, a replacement hyperedge containing just
a rewrite edge is added to the graph. When a Resolu-
tion Inference is performed, a replacement hyperedge
is added which contains only resolution edges. When
a paramodulation inference is performed, a replace-
ment hyperedge is added containing one rewrite edge
and zero or more resolution edges. Replacement hy-
peredges are labelled with the equational constraint
corresponding to the inference. FEach edge in a re-
placement hyperedge is labelled with a renaming sub-
stitution to be applied to the target term. We give
some examples here and leave the formal definition
for the next section. In all examples, any omitted la-
bellings are assumed to be trivial (i.e., missing equa-
tional constraints are assumed to be T, missing renam-
ing substitutions are id, and a missing path is some
non—existing path). Similarly, clauses written as un-
constrained clauses are assumed to have a constraint
of T. First consider the following Resolution inference:

pVaqVr —rVsVi
pVqgVsVi

The conclusion of the inference is the same as the
right premise, except that the literal —r is replaced
by the literals p and ¢, so we draw a replacement hy-
peredge containing a resolution edge from the vertex
labelled by —r to the vertex labelled by p and from
the vertex labelled by —r to the vertex labelled by g¢.
Suppose we also perform the inference

-rVsVi —tVyp
—rVsVp

or the inference

pVqgVsVvit =tV yp'
pVqgVsVy

We represent these inferences in Figure 2.
Consider the following Critical Pair inference:

[U(2) = flg(x)  [(f(x) ~ [9())
F(f(g(@))p) = f(g(@) [F(f(2))p = f(2)]

X

vV vV vV
P q r -7 s t ot p’
AN S NN L

Figure 2: Resolution Inference

The subterm f(z) in the second premise is unified
with f(f(z))p and replaced by f(g(x))p from the first
premise. We must label the new rewrite edge with
the equational constraint f(f(x))p = f(x) and the
renaming substitution p. It is represented graphically
in figure 3.

Figure 3: Critical Pair Inference

We define an unfolding of the graph G to be a tree T’
such that each vertex and hyperedge in 7" 1s also in G,
although vertices and hyperedges may be duplicated
in T'. If there is an edge e from u to v in 7T, then e
is directed from u to v in (G. Each node has only one
hyperedge leading from it in 7. Also, we require that
each leaf of T" 1s labelled by a variable, constant, or
O—ary predicate symbol.

We will define T' to be the element that a tree T
represents. If the root of an unfolding 7" is labelled by
V, a predicate symbol or a negated predicate symbol,
then 7" is a constrained clause. If the root of 7" is a
variable, constant or function symbol, then 7" is a con-
strained term—clause pair (¢,C)[¢]. If v is a vertex,
and U is the set of all unfoldings rooted at v, then
v =Urer T'. Since the graph may have cycles, v can
be infinite, although each element of v is finite.

Let T be a tree whose root is labelled with V. We



say that v represents T if v is the root of T. If T" is
a subtree of T' such that 7" = LV C' [¢] and there is
no subtree 7" of T" such that 7" = LV C'[¢'] for
some C’ and ¢’, then we say that v represents L in
T if v is the root of 7”. If T is a subtree of 7" such
that 7/ = (t,C) [ ¢] and there is no subtree T" of T
such that 7" = (t,C") [ ¢'] for some €’ and ¢/, then
we say that v represents t in T if v is the root of T".

Before defining 7', we must give a few definitions
concerning trees and graphs. A tree 7T can be repre-
sented as the set {u,(e1,71), - (en,Tn)}, where u is
the root of T', 17, - - -, T;; are subtrees of T" and for each
t, e; 1s the edge in T from u to the root of 7;. If n = 0,
then 7' is the trivial tree.

Let T be a tree of the form {u, (e1,7T1), - -(en, Th)}
and II be a path. We inductively define the notion of
prefiz and the notation 717 meaning the subtree of T
rooted at the path II. If II is the empty path, then II
is a prefix of 7" and Ty = T'. Otherwise, II is a prefix
of T if II is the sequence of edges < e;, II' > for some
1 and II’ is a prefix of 7;. In this case 171 = Tiyp. If
II is not a prefix of 7', then 71y 1s the empty tree. If
IT is a prefix of T" and w is the source of some edge in
IT and v is the target of the final edge in II, then u is
above v and v is below u.

We define the removal of a path from a tree as fol-
lows. If T'is a tree and II is a path, then 7" —II 1s the
tree 1" with 117 replaced by the empty tree. If 11y is
the empty tree, then T'— Il = 7. We also define an
ordering on trees such that 7' < T" if the number of
replacement edges in 7' is smaller than the number of
replacement edges in T".

Each 7 can be defined inductively. If T is the empty
tree, then 7= O T]. If T has a single node labelled
by a O-ary predicate symbol P, then 7' = P[T].
Negated predicate symbols are treated similarly. If
T has a single node labelled by ¢ where ¢ is a variable
or a constant symbol then 7' = (¢,0)[T].

If T is of the form {u,(e1,T1), -, (en,Tn)} where
{e1,--+,en} is a subterm hyperedge then each e; is
labelled with 7. If u is labelled by V and T, = O [e:]
for each i, then 7' = C1V - -V Cr[o1 A - A gn ]
If u 1s labelled by a predicate symbol P and T, =
(ti, Cy) [ 4] for each ¢, then T = P(ty, -, ) VCL V

VO, [e1 N~ Awn]. Negated predicate symbols
are treated similarly. If u is labelled by a function
symbol f and T} = (ti, Cy) [ ¢i] for each 4, then T=
(ftr, - tn), CLV Co)ler A Nen ]

Suppose T = {u,(e1,T1), -+, (en, Ty)} where u is
labelled with a (usually negated) predicate symbol,
e={ey, -, ey} is a replacement hyperedge, and the
label of each e; is (p;,II;), where p; is a renaming

substitution and II; is a path. The hyperedge e is
labelled by an equational constraint . Suppose that
for each i, T, = C; [ ;] where T;' = T; — 1I;. Then
T=Cipr V-V Cupn [ Ap1pr Ao Npnpn ]

In Figure 2, suppose u, is the node labelled by p,
-, 18 the node labelled by =7, u_; 1s the node labelled
by —t and uy is the node labelled by the V on the right.
Then u, = {p}, us, = {-r,pVq}, ui = {=t,=rvs, pVv
qVstanduy = {—-tVvp' , —rVsVp ,pVeVvsVvyp}. So
up represents pin pVgVr andin pVegVsVyp'. Also,
U~y represents —r in =r VsV p’ and u-; represents —t
in —tVp.

Suppose T = {u,(e/,T"),(e1,T1), - (en,Th)}
where u is labelled with a constant or function sym-
bol, e = {¢’,e1,---,e,} is a replacement hyperedge,
¢’ is a rewrite edge, the label of each ¢; is (p;, II;),
and the label of ¢’ is (p/,II'). The hyperedge e is la-
belled by an equational constraint ¢. Suppose that
for each i, T;' = C;[y;] where T; = T; — II; and
" = (t',C"[¢']. where T" = T’ — 1I'. Then
T=(tp,C'p'VCipr V-V Crpn) [0 AP Aprpr A

AN Pnpn ]

In Figure 3, suppose u; is the node labelled by f on
the top of the right hand side, uy is the node labelled
by f on the middle of the left hand side and wugs is
the node labelled by ~. Then wy = {(f(g(x)),0)},
uz = {(f(=),0),(f(g()p, O) [F(f(x))p = f()]},
and uz = {f(f(x ) ~  flg(2), f(f(g(x))p) =~
flg(x)) [[f(f( )p z)]}.  So wuy represents
flg(w)) in f(f(x)) l‘)) and in f(f(g(x))p) ~
FlgeN [ f(f(x)p = f(x)]. Also, uz represents f(x)
in f(f(z)) = f(g(x)), but does not represent f(g(x))p
in F((g(x)p) ~ Fg(@) [F(S@)p = J(2)].

To understand the meaning of path labels, we re-
fer the reader to figure 4. To simplify the example,
the edges are referred to by the labels of the vertices
on either end. Let ug be the node labelled by @,
u, be the node labelled by a, u_p be the node la-
belled by =P, and u-g be the node labelled by —=@Q.
There are four replacement hyperedges in the graph.
Omne contains a resolution edge from u, to ug and a
rewrite edge from u, to the node labelled by b. One
contains a resolution edge from u-p to ug. One con-
tains a resolution edge from u-¢g to u-p and is labelled
with the path < (=P, a)(a,Q) >. The other one also
contains a resolution edge from u-g to u-p but it is
labelled with path < (=P, Q) >. Then ug = {Q},
g = {(a,0),(b,@Q)}, usp = {=P(a), = P(b)V Q}, and
uig = {-Q,—~P(a),~P(b),0}. For the meaning of
u-qQ, we have thrown away the information at the end
of the path (i.e., @ is not included in the clause with
= P(b) or with O).
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Figure 4: Paramodulation Inference

4 Inference Rules

In the previous section, we have shown how to cre-
ate a graph from an initial set of clauses, using only
subterm edges. We have also defined the syntax and
semantics of the graph. We mentioned that the in-
ference rules add replacement edges to the graph. In
this section, we define exactly how the inference sys-
tem adds these edges to the graph.

The clauses that exist in the graph at any moment
of a theorem proving derivation are represented by
the set |J,cr © where U is the set of all vertices in
the graph labelled with V. At each step of the infer-
ence procedure, the theorem prover must decide what
edge to add next. To do that, it must decide what
Basic Paramodulation inference must be performed.
It is possible to do this without calculating all the
clauses. It 1s only necessary to know which literals in
the graph are selected in some clause. We must also
know which clauses contain a selected positive literal.
For negative literals we only need to know if they are
selected in some clause, but not which clause they are
selected in. In this section we describe what edge the
theorem prover must add once it decides the inference
to perform. In many cases, the theorem prover will
not perform the necessary inference. Instead, it will
add an edge corresponding to another inference. But
because of the addition of that edge, the required in-
ference will also be performed.

The theorem prover must halt when no inferences
can be performed or the empty clause is found. One
simple way to search for the empty clause, is by using
the inductive definition of resolution edges to calculate
a fixed point of v for each vertex v. To begin with,
¢ = () for all v. Then at each stage, we apply a single
application of the inductive definition of replacement
hyperedges. If that places O ¢] in © for some ¢, then
we add O[] to ©. Otherwise, we don’t add anything
to v. Eventually, if a tree rooted at a vertex labelled
with V represents the empty clause with a satisfiable

constraint, then the empty clause is present. Each
step of this process can be done in polynomial time in
the size of the constraints. For the ground case, the
procedure can not take more steps than the number of
vertices in the graph, because it can only add O once
to each vertex. If O is added to no vertices at some
step, then the fixed point i1s reached, and the search for
the empty clause is terminated. For the non-ground
case, the procedure may proceed infinitely long, so it
may be necessary to dovetail the search for the empty
clause with the addition of new edges which represent
inferences.

Now we explain how to perform each inference.
First, consider the resolution inference rule.

r'vA[6:] -A"VA[6:]
TypVA[An= A AbigAb:]

Let 77 be the tree which represents the clause ' V
A[6,], and T5 the tree which represents the clause
- A"V A[62]. Let uy be the vertex that represents A
in 7. Let us be the vertex which represents —A’ in
Ty. Let T} be the smallest subtree of 7} which has the
same root as T; and for which u; still represents A.
Then Tll is a clause of the form IV A[6,']. Let T3’
be the smallest subtree of 15 Whic}l has us as a root
and ws still represents —A’. Then 7%’ is a clause of the
form —=A’VA’[65']. Let Uy be the multiset of vertices

which represent one of the literals of IV in TlA/. Each u
in Uy is the root of some tree T, such that 7, = L for
some literal I in IV. Let p, be the renaming applied
to L in T;’. Let Us be the multiset Qf vertices which
represent one of the literals of A’ in sz. Each v in U,
1s the root of some tree Ty, such that 7;, = L for some
literal L in A’. Let p, be the renaming applied to L
in T;/. The resolution we will directly perform is the
following

I'vA[6'] —A'V A6, ]

['p VA [Ap= A AOIp A0 ]

The clause =A’ vV A’[ 65’ ] is not actually a clause.
It is only a part of a clause. The inference is performed
on all clauses that contain =A’ vV A’ [65'].

To perform the resolution, we add a replacement
hyperedge e labelled by the equational constraint
An = A" AB'n A By, Tf u is a vertex in U, then e
will contain a resolution edge from wus to u labelled
with p,. If u is a vertex in U; then e will contain a
resolution edge from us to u labelled with p,n. If u
is a vertex in U; above u; in T}’, then there is some

path II from u to u; in T}, So the edge from us to u
will be labelled by the path II.



Additionally, we may need to modify the path in-
formation on some existing paths. If u is a vertex in
Uy below ug such that an edge e, 1s added from us to
u. let I, be the path from us to u. Then, for every
edge €’ of the form < Iy, II,,, IIs >, from some vertex
v1 to some vertex vs, a new edge is added from vy to vy
which has the same label as ¢’ except that path infor-
mation 1s < I, ey, I3 > instead of < Iy, I, II5 >.

When the new replacement hyperedge is added
to the graph, several resolution inferences are per-
formed. Let 75 be the tree formed from T3 by re-
moving the hyperedge from us in 75 and adding e and
71, then removing all the edges and vertices no longer
reachable from the root of T5. Then T3 represents
Iy VA[Ay = A" A1y AOs], where oy’ = pn and p
is the renaming applied to —A’. The only difference
between this and the inference we wanted to perform
is that the renaming may be different.

We give two illustrations of the resolution rule.
First consider Figure 2. The reader may verify that
the hyperedge on the left is created from a resolution
inference among pV ¢V r and =rV s V¢. The hy-
peredge on the right is created by an inference among
the clauses pV ¢V sVt and =tV p'. According to the
above notation, 77 is the tree representing pV ¢V sVt
and Th represents —t V p’. Then T}’ is the subtree of
T} representing —r V sVt and 7%’ is the subtree of T
representing —t. Therefore we must add a hyperedge,
consisting of an edge from the vertex labelled by =t to
the vertex labelled by —r and an edge from the vertex
labelled by —t to the vertex labelled by s. Note that
this also performs the inference we originally wanted
to perform.

For another example, consider Figure 4. As men-
tioned earlier, there are four hyperedges in the graph.
The hyperedge directed from the vertex labelled by a
is from a paramodulation inference, and we will dis-
cuss that below. Suppose we want to perform the
following resolution inference:

-Pb)yvQ Q)
- P(b)

Using the above notation, 7} is the tree rooted at
the vertex labelled by the second from the left V sym-
bol, containing the hyperedge directed from the vertex
labelled a. 7}' is the same tree. u is the node labelled
(). us 1s the node labelled =Q). The only element of
U; is the node u labelled by = P. To perform the res-
olution inference, we must add an edge from us to
u. But since u 1s above u;, we must label the edge
with the path < (=P, a)(a,@) > from u to u;. As we
mentioned earlier, without the path information, the
conclusion to the inference would be =P(b) vV @, which

is not correct.

After this inference, we can resolve =P (b) and P(b).
So uy is the vertex labelled by P and us is the vertex
labelled by =P. Let u be the vertex labelled by @.
We need to add a resolution edge from uy to u. But
since an edge exists between us and up labelled by the
path from us to u, we must add another edge from wus
to u; labelled by the edge from us to u.

The other inference rules are similar. Consider pos-
itive factoring.

rvAvAI[e]
TVA[JA=A AG]
Let T represent the clause TV AV A'[#]. Let u; be
the vertex that represents A in T'. Let uy be the vertex

which represents A’ in T. Let T)' be the smallest
subtree of T which has u; as a root and wuy represents

A. Then T;’ is a clause of the form I'y' vV A[6,]. Let
Ty’ be the smallest subtree ofT which has us as a root

and us represents A’. Then Ty is a clause of the form
' v A [65].

Let U; be the multiset of vertices which represent
one of the literals of I'y" in 71’. Each w in U; is the
root of some tree 7, such that Tu = L for some litelzal
LinTy’. Let p, be the renaming applied to L in 77’.
Let Us be the multiset of vertices which represent one
of the literals of I'y” in 7%'. Each w in Us is the root
of some tree T;, such that Tu = L for some lite¥al Lin
I'y'. Let p, be the renaming applied to L in T3'.

To perform the positive factoring, we add a replace-
ment hyperedge e labelled by the equational constraint
A= A'ANO A Tf wis a vertex in U UU> then e will
contain a resolution edge from wus to u labelled with
pu- Also, e will contain a resolution edge from us to
u1. As in resolution, this may cause path information
on other edges to be modified.

Consider the paramodulation inference rule.

Tvsat[6] Lis'IVAT6:]
TpVI[tIVA[snp=s AbinAba]

Let 77 be the tree which represents the clause ' V
s 1[601], and T5 the tree which represents the clause
Lis'I|VA[6:]. Let ug be the vertex that represents s,
uy the vertex that represents ¢t and us the vertex that
represents s & ¢t in 1}. Let us be the vertex which
represents s in 7b. Let 7%’ be the smallest subtree
of 77 which has the same root as 77 and for which
uz represents s & t’' for some ¢’ and ug represents s in
s at'. Then T} is a clause of the form I"Vs ~ ¢/ 16:'].
Let 7% be the smallest subtree of T} Avvhich has us as

;.
a root and us represents s’. Then 75" is a clause of




the form L'[s'] V A’[65']. Let U; be the multiset of
vertices which represent one of the literals of I' in

Ty'. Each u in U; is the root of some tree T}, such
that 7, = L, for some literal L; in I". Let py be the
renaming applied to Ly in T}'. Let Uy be the multiset
of vertices which represent one of the literals of A’ in
Ty'. Each u in U, is the root of some tree T}, such
that T}, = L, for some literal Ly in A’. Let py be the
renaming applied to L in 7',

To perform the paramodulation, we add a replace-
ment hyperedge e labelled by the equational constraint
sn =s' AB0'n A0y The hyperedge e will contain an
edge from us to uy, labelled with pn where p is the
renaming applied to ¢/ in 77’ If u is a vertex in U
then e will contain an edge from uy to u labelled with
pu- If w is a vertex in U; then e will contain an edge
from us to u labelled with pyn. If u is a vertex in
Uy above uz in 71/, then there is some path II from
u to uz in T7'. So the edge from us to u will also be
labelled by the path II. Path information may need
to be modified as in resolution.

For an example of a paramodulation inference, con-
sider Figure 4. In that example a paramodulation is
performed among the clauses Q V @ & b and = P(a).
A replacement hyperedge is added which is comprised
of a resolution edge from the vertex labelled by a to
the vertex labelled by @, and a rewrite edge from the
vertex labelled by a to the vertex labelled by b.

Another example of paramodulation is in figure 3.
Here, Ty and T5 are the same tree, s’ represents f(z),
s represents f(f(x)) and ¢ represents f(g(x)). To per-
form the paramodulation we add the rewrite edge in
the graph. We called the renaming p, so that is the
label of the rewrite edge, and the replacement hyper-
edge is labelled with the constraint f(f(z))p = f(x).

Finally, we consider Equation Resolution.

s#tVvI[I]
I[s=tAf]

Let T be the tree which represents the clause s &
tVvI[#]. Let u' be the vertex that represents s & ¢ in
T. Let T be the smallest subtree of T" which is rooted
at v’ and u’ represents s % t. Then T’ represents a
clause of the form s 8% ¢ VI'[6'].

Let U be the multiset of vertices which represent
one of the literals of I in 7”. Each u in U is the root
of some tree T;, such that Tu = L for some literal L in
I'. Let py be the renaming applied to L in 1.

To perform the equation resolution, we add a re-
placement hyperedge e labelled by the equational con-
straint s =t A6, If u is a vertex in U then e will con-

tain an edge from u’ to u labelled with p,. The path
information may need to be modified as in resolution.

Redundant clauses may be removed by not requir-
ing an inference if the desired inference has redun-
dant premises. This is crucial in a standard theorem
proving derivation, because otherwise the search space
grows too large. But we are considering other ways of
reducing the search space, and it seems to be less nec-
essary in this context. For instance, it may be more
effort to check if a clause 1s a tautology than to per-
form a resolution inference involving that tautology.
And because of our structure sharing, such an infer-
ence may need to be performed anyway, because the
literal resolved away may exist in another clause.

We prefer to focus on methods of redundancy which
may be performed by local examination of the graph.
For instance, after the Basic Paramodulation infer-
ence, the right premise may be removed if s &~ ¢ is
the only literal in the left premise and the constraint
sn = s A0y is a renaming or T. This is called de-
modulation or simplification. One way to do it is the
following. Suppose a replacement hyperedge e from
node u is added because of an equation s ~ t. Fur-
ther, suppose that e only contains a rewrite edge from
1 to v and e has an equational constraint which is just
a renaming substitution or T. Then e can be con-
sidered as a simplification edge. For most trees, we
require that if the tree contains u then it must con-
tain e leading out of u. The only exception we make
is when u represent the root of one side of an equation
s &~ t' with #' < t. In that case, we require that no
tree containing u has e leading out of it. The reason is
that we do not want to let an equation simplify itself
or something smaller.

In a resolution inference, the right premise may be
removed 1f A is the only literal in the left premise
and the constraint A = A’ A 617 is a renaming or T.
This is called subsumption. We perform subsumption
the same way we search for the empty clause as given
in the beginning of this section. Whenever a vertex
Of¢] is added to o, then v is considered to repre-
sent only the empty clause if ¢ is a renaming or T.
Any node which represents the empty clause is then
considered as the empty clause. If this subsumption
rule is performed, there is no need to check for the
empty clause in the ground case, because the empty
clause will automatically be propagated up to one of
the nodes labelled by V.

Now we give the soundness and completeness re-
sults. We can define a theorem proving derivation
exactly as before. The only difference is that an in-
ference (or several inferences) is performed by adding



an edge to the graph and several deletions may be
performed by removing an edge from the graph. So
Sit1 18 created from S; by adding the conclusions of
all those inferences or deleting all those clauses.

Theorem 2 PWD is sound and complete.

The completeness 1s because for each inference de-
sired, the edge added to the graph adds the desired
conclusion. The soundness is because adding a clause
only performs inferences where the conclusion follows
from the premises.

5 Complexity

We show that PW D polynomially decides certain
classes. For all these classes, only polynomially many
edges can be added to the graph, and it only takes
polynomial time to perform the next inference at any
point. For these complexity arguments we assume that
all inferences and redundancy removals are performed
by adding an edge to the graph or removing an edge
from the graph. Any inference, which can be, will
be considered as a simplification or subsumption. We
assume that it is possible to calculate the selection
rule in polynomial time. We call the inference rules
PWD, PWDT, PWD™ or PWD™% to correspond

to the selection rules of Basic Paramodulation.
Theorem 3 PW D polynomially decides HC.

Proof. Let Sy € HC. Let n be the number of literals
in Sp. Only the resolution inference rule i1s applicable
to this class, so no positive literals will have outgoing
hyperedges. Suppose that u is the root of 77 which
represents I' V A, which is the left premise of an in-
ference and wy represents Ain 'V A. If 'V A & S,
then there must be some smaller tree with root u such
that wu; represents A. This is true, because the hy-
peredge from u must have u; as a target. Therefore,
all necessary inferences involve a member of Sy and a
negative literal. There are only n? of these inferences,
so only n? edges can be added to the graph. The only
other thing necessary to check is that the selection
rule for all clauses is decidable in polynomial time. In
other words, for a given literal, it must be decidable
in polynomial time if that literal is selected in some
clause. This must be done carefully, because a graph
may represent exponentially many clauses. However,
it is possible to decide in polynomial time if a literal
belongs to a clause, or if a set of literals belong to the
same clause. So, for instance, selection rules based on
an ordering of the clauses can be decided in polyno-
mial time. A smarter method is to select all negative
literals in each goal clause. That saves the time of

checking the selection rule; and is very efficient in this
method. Note that this argument also holds in the
non—ground case. But in that case, it is undecidable
if O exists with a satisfiable constraint. O

Theorem 4 PW DT polynomially decides CN .

Proof. Since the set is saturated by Paramodulation,
we know that no inferences are necessary into positive
literals. So we only need inferences whose left premise
is a clause in Sy. The argument is similar to the ar-
gument for HC. O

Theorem 5 PW D polynomially decides UE. There-
fore Completion is polynomial.

Proof. Let Sy € UE. Let n be the number of sym-
bols in Sy. Since the clauses are unit clauses, the only
replacement hyperedges are the ones generated from
Basic Paramodulation which contain one rewrite edge
or the ones from Equation Resolution which contain
no edges. Only one rewrite edge can appear between
any two vertices. There can only be n vertices in the
graph, hence there are no more than n? rewrite edges
and therefore no more than n?+n replacement hyper-
edges. Since the clauses are ground, each replacement
hyperedge is a simplification hyperedge, so each sym-
bol labelled by = stands for only one equation. We
have to be careful, because the graph may contain ex-
ponentially large clauses. However, by an extension of
the Patterson-Wegman or Martelli-Montanari unifica-
tion algorithms [12, 14], the unification could still be
performed in linear time. It is only necessary not to
write out each clause. O

Theorem 6 PW D™ polynomially decides HCE.

Proof. The left premise is a unit positive equation in
every inference, since we perform subsumption. Then
the argument is the same as for #€. O

6 Conclusion

We have presented data structures which create
massive structure sharing of a Paramodulation Theo-
rem Prover. This gives theorem proving a polynomial
search space for some important subclasses of first or-
der logic with equality. Alternately, this can be viewed
as a new inference mechanism for first order logic with
equality. This is the view we have taken in the imple-
mentations of this procedure which we have begun.
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