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List of Symbols

Other than ordinary text in variously sized fonts, and in roman, italic, bold-
face, greek letters, ordinary mathematical symbols (U, €, &, C, \ (set difference),
f, 0o, =, V, etc.) and the “at-sign” @ used in email addresses, we use the following
mathematical symbols:

— Relational symbols: & (equality in the formal language), = (equality in the
meta language), # (negation of equality) <, <, >, >, £, % ;
— Grouping symbols: [, [1,, [, (-), {-},

— Miscellaneous =, [= (logical implication), O (empty clause), and sometimes
we put a bar over symbols, as in L.

We also use standard form for inferences, e.g.,

O Cy
C



Abstract. We present a modification to the paramodulation inference
system, where semantic equality and non-equality literals are stored as
local samplifiers with each clause. The local simplifiers are created when
new clauses are generated and inherited by the descendants of that
clause. Then the local simplifiers can be used to perform demodulation
and unit simplification, if certain conditions are satisfied. This reduces
the search space of the theorem proving procedure and the length of
the proofs obtained. In fact, we show that for ground SLD resolution
with any selection rule; any set of clauses has a polynomial length proof.
Without this technique, proofs may be exponential. We show that this
process is sound, complete, and compatible with deletion rules (e.g., de-
modulation, subsumption, unit simplification, and tautology deletion),
which do not have to be modified to preserve completeness. We also
show the relationship between this technique and model elimination.



1 Introduction

The paramodulation inference system is an extension of the resolution inference
system to deal with theorem proving in first order logic with equality (Robin-
son & Wos (1969)). Unfortunately, the paramodulation inference system can be
very prolific, creating many clauses when searching for a proof. Recently, some
restrictions on paramodulation have been developed to limit the search space
(Bachmair & Ganzinger (1994), Bachmair et al (1995), Hsiang & Rusinowitch
(1991), Nieuwenhuis & Rubio (1992), Nieuwenhuis & Rubio (1995), Peterson
(1983), Pais & Peterson (1991), Zhang (1988)).

A paramodulation theorem prover can be viewed as a Knuth-Bendix com-
pletion procedure, extended to handle disjunctions of equations. Knuth-Bendix
completion is fairly efficient, because each equation generated can be simplified
by the other equations, thereby saving many inferences and keeping equations in
areduced form. In paramodulation inference procedures, we may simplify clauses
with positive unit clauses!, exactly as we do in completion (Wos et al (1967)).
Unfortunately, the effect of this is limited, because not many unit equations ex-
ist. In this paper, we show how to increase the number of demodulations. The
idea is that if a paramodulation inference has been performed using equation
s = t, yielding equation (', then descendants of C' may be simplified by s = ¢.
Sometimes this is not sound and other times it is not complete. In this paper,
we show exactly which simplifications can be performed, preserving soundness
and completeness. We call this local simplification, because the simplifiers are
local to clauses, and may not be used globally, as can unit equations.

In Kirchner, Kirchner & Rusinowitch (1990), it was shown how constraints
could be used in theorem proving to limit the instances of a clause. Since then
many papers (Bachmair et al (1995), Lynch & Snyder (1995), Nieuwenhuis &
Rubio (1992), Nieuwenhuis & Rubio (1995), Nieuwenhuis & Rubio (1994), Vi-
gneron (1994)) have appeared which use constraints to restrict the search space.
These papers show that other restrictions on the search space can be represented
as constraints. Constraints are built up as inferences are performed and used to
remember earlier inferences. Local simplifiers are similar to constraints in that
they are inherited in the same way. In contrast, constraints are a way of restrict-
ing the number of instances of a clause, but local simplifiers are not. Therefore,
local simplifiers have an advantage over constraints in terms of redundancy rules,
as we will show.

Local Simplification works as follows When an inference is performed, an
equation is saved as an ancestor literal (as in Model Elimination (Loveland
(1968), Loveland (1978)), along with some conditions. This is called a local sim-
plifier. When the conditions are met, that equation can be used to simplify the
clause. This may limit the search space, but in contrast with other restrictions
it may also shorten the refutation. An advantage our local simplifiers have over
other constrained theorem provers is that they are not weakened when deletion
rules, such as demodulation, unit simplification and subsumption, are performed.

! This is called simplification or demodulation.



To show the completeness, we use techniques from Bachmair & Ganzinger (1994)
to remove redundant clauses. This paper 1s evidence to the power of these redun-
dancy techniques, because we can show our completeness results by appealing
to the proof in that paper.

As a motivation of the need for local simplification, consider the following
resolution refutation proof.

RV-P PVQ
-~R RVQ
PV=Q Q
RV P P
-~R R
a

In this proof, the variable P has been removed from the clause P V @ by
the first resolution inference. However, it later reappears, and the same set of
inferences is repeated. Local Simplification allows us to avoid that repeated set of
inferences by remembering which variables are removed by resolution and then
immediately removing them if they reappear. Local Simplification would result
in the following proof.

RV-P PVQ
~R RVQ[-P]
PV =Q Q[P —-R]
P[-P,-R,=Q]
Od

In this proof, the literals are recorded as they are resolved away, and then
immediately removed when they reappear. The literals =P, =@ and = R are saved
as local simplifiers. In the last step, the variable P reappears and is immediately
removed by a local simplification step. (i.e., the clause P is replaced by the
empty clause). This example shows how Local Simplification limits the size of
proofs. It also reduces the search space, because the extra clauses do not need
to be created. Local simplifiers contain ancestor literals as in Model Elimination
(Loveland (1968), Loveland (1978)), and the local simplification step is similar to
a reduction step in Model Elimination. The difference is that reduction is needed
to preserve completeness and local simplification is only used to reduce the search
space and the length of proofs. 2 We can also use local simplification to limit the
search space of equational theorem provers and the size of paramodulation proofs
as illustrated by the following example . Consider the following Paramodulation
proof.

2 We discuss more about the relationship with model elimination in the conclusion



-R RV P(b)
~P(b) v Q(a) P(b)
RVa=b Q(a)
-R RV Q(b)
~Q(b) Q)
O

In the first paramodulation inference, a is rewritten to b. In one of the de-
scendants, a reappears. It 1s then necessary to perform the same sequence of
inferences as before. In local simplification, we store a & b as a local simplifier
and immediately rewrite a to b whenever it appears. We call it Local Simplifica-
tion because we can only perform this simplification locally in this clause, and
not globally in other clauses. We now have the following proof.

RVa=b P(a)
=R RV P [axb]
Q(a) vV —P(b) Ph)[amb]
Qa)[ar b]
—Q(b) Qb)) [arb]

O

We only show the local simplifier that was used, but there are other local
simplifiers that could be saved. In this example, we recorded the fact that a &
b, then when a reappeared, it was rewritten to b. In other words, the clause
containing a is removed as the clause containing b is added. This cannot be done
in Model Elimination.

Unfortunately, Local Simplification cannot always be applied. Consider the
following proof.

R(@)VP(®) [a~b]
~R(b) ROV PO [a~b]
~P(b) P [a~b]
O

We record the fact that a &~ b then use it to rewrite a to b in a later step.
Unfortunately, our initial set of clauses: {P(a), R(a) Va = b,—R(b),~P(b)} is
satisfiable. Intuitively, the problem is that we used a & b to rewrite R(a) but
they both came from the same clause. Any descendant of R(a) would cause a
similar problem. To avoid that, we save literals with each ancestor literal, which
record where each clause came from. This is the only thing which is necessary to



preserve soundness. It is slightly more sophisticated than the Model Elimination
technique, which keeps track of the position of an ancestor literal in a clause.

Another problem if we are not careful, is that Local Simplification may not
be complete. We will discuss this in a later section.

This paper is organized as follows. In section 2 we give the necessary defini-
tions. In sections 3 and 4, we give the modifications necessary to the inference
and deletion rules to handle local simplifiers. In section 5, we give the local sim-
plification rules used to simplify clauses. Section 6 proves completeness. Section 7
i1s a discussion of how the local simplification rules react in combination with
some well known restrictions. In SLD resolution with ground non—equational
clauses, we show that every set of clauses has a linear refutation for every se-
lection rule, whereas other goal directed inference rules have only exponential
refutations of some sets of clauses with certain selection rules. This is for the non-
equality case. However, we believe our results are especially powerful with equal-
ity. Section 8 shows some ways that local simplifiers can be simplified. Finally,
section 9 shows the relationship with related work, including model elimination.

2 Preliminaries

We use the standard definitions of theorem proving (see Loveland (1968), Love-
land (1978)).

Definition1. A term is built from function symbols, constants and variables.
An atom is a predicate symbol applied to some terms. The equality symbol
is a distinguished binary predicate symbol (=), written in infix notation. For
example s & t is an equality. Negative equalities —(s = t) are written as s % ¢.
A literal is an atom or a negated atom. If L is a literal, then L is the negation of
L ie if L=Athen L =-A4andif L =—Athen L = A. An undecorated clause
i1s a disjunction of literals. Sometimes clauses will be viewed as multisets. We
represent clauses with the letters C' and D, literals with L and M, and atoms

with A and B.

We next give the definition of decorated clause as used in this paper. A
decorated clause is an (undecorated) clause with some literals attached to it,
which can be used to simplify the clause. These literals, which may be equations,
are created when the clause is created and inherited by descendants of the clause.
These literals are saved along with certain conditions that indicate when they
may be used to simplify the clause, remove a literal from the clause, or remove
the entire clause.

Definition2. A (decorated) clause is of the form

Cl(L1,C1,51),+, (Lim, Cm, Sm) ] where C is an undecorated clause, and each
(L, Cy, S;) is a local simplifier on C. Each L; is an ancestor literal, which is used
for simplification of the clause. Each C; is a disjunction of literals, and each S;
1s a set of undecorated clauses. S; and C; determine when L; may be used for
simplification. We use variables like ¢ and ¥ to represent sets of local simplifiers.
Since they are sets, the order is unimportant.



When we refer to a clause, we may be referring to a decorated or an undec-
orated clause, depending on the context.
Substitutions are defined as usual.

Definition 3. A substitution is a mapping from variables to terms, which is the
identity on all but finitely many variables. We identify a substitution with its
homomorphic extension. If ¢ is a substitution, then to represents the result of
applying o to t. In general, (C'[¢])o = Co[pc]. If ¢ and 5 are substitutions,
then on is defined so that zon = (zo)n for all variables . We say o < @ if there
is an 7 such that on = 6. We call ¢ a unifier of s and ¢ if sc = to. We call ¢
a most general unifier of s and ¢ (written mgu(s,t)) if o is a unifier of s and ¢
and for all unifiers 6 of s and ¢, o < 6.

A multiset 1s an unordered collection with possible duplicate elements. We
denote the number of occurrences of an object z in a multiset S by S(x). A
clause is viewed as a multiset of literals. A reduction ordering < is a well—-
founded ordering which is stable under context (i.e., if s < ¢ then u[s] < u[t])
and stable under substitution (i.e., if s < ¢ then so < to). Let < be a reduction
ordering on the literals, total on ground terms. This ordering is extended to an
ordering on the clauses by identifying < with its multiset extension. In other
words, if S and 7" are finite multisets, then S < 7T if and only if there exists an
L € T such that T(L) > S(L) and for all M > L, S(M) = T(M). We say that
A is maximal in a multiset S if there 1s no B in .S such that B > A.

One key difference between the local simplifiers in this paper and the con-
straints in other papers on constrained deduction is that we do not use the local
simplifiers to determine ground instances.

Definition4. A ground clause (resp. term) is a clause (resp. term) without
variables. A substitution ¢ grounds a clause (resp. term) C' if C'o is ground.
In this paper, when we call o a ground substitution, we mean that ¢ grounds
certain terms which are obvious from the context. The set of ground instances

of Clel, Gr(Clel) = {Celo grounds C'}. And Gr(S) = { Gr(C) |C € S}.

The implication of this definition of ground instances is that it will not be
necessary to weaken local simplifiers when performing simplification and sub-
sumption.

We will use the notation |= to mean logical implication.

Definition 5. If S is a set of ground clauses and (' is a ground clause or a
literal, then S = C' if and only if C' is true in every model of S. If T' is a set of
ground clauses or literals, then S |= T if and only if S | C for all C € T. In
general, if S is a set of clauses and C is a clause or literal, then S |= C' if and
only if Gr(S) = Gr(C). A clause C' is satisfiable if and only if there is a model
that makes ' true. The empty clause O is unsatisfiable. A set of clauses S is
satisfiable if and only if some model makes all of the clauses in .S true.



A clause 1s redundant if it is implied by smaller clauses. The definition of
redundancy is adapted from Bachmair & Ganzinger (1994). Redundant clauses
may be removed, because they are not needed for finding a proof.

Definition6. Let T be a set of clauses. A clause C is redundant at T in S if for
all ground substitutions ¢ there are clauses Dy, -+, D,, € Gr(S), where n > 0
such that

1. Di,---, D, E Co, and
2. {Dj}<Toforall j,1<j<n.

C' is redundant up to T in S if the < in condition 2 is replaced by <. For a
clause D, C'is redundant at D in S if C' is redundant at {D} in S. A clause C'
i1s redundant in S 1f C' is redundant at C'in S.

The local simplifiers are added when a clause is generated and inherited from
the clause’s ancestors. In the following definition, we show the meaning of the
local simplifiers.

Definition7. The clause C'[(L1,C1,51), -, (Lm, Cm, Sm)] is said to be cor-
rect in S if, for each ¢,

1. C; C C,
2. C; V L; 18 redundant at S; in S, and
3. L, € C,.

Conditions 1 and 3 are needed for soundness. Condition 2 will be needed
for completeness. It will assure us that a clause may be removed because the
inference creating it is redundant. We only need to know the maximal elements
of S; so we may remove everything else from the set.

For example, the clause P(a)V Q(b)V R(c)[(a = b,Q(b) V R(e),{D, E})] is
correct in S'if D = Q(b) V P(¢) and E = R(c) V—P(c) Va= b are clauses in S.

If a clause is ever created where the first two conditions of the definition
hold, but the third condition does not (i.e., for some ¢’s, L; € C;), then we may
replace each local simplifier of the form (L;, L; vV €', S;) with (L;,C’, S;). The
first two conditions will still hold, so the clause is now correct. Therefore, when
checking for correctness of a clause, we only check the first two conditions. We
assume that the above transformation i1s performed whenever a clause 1s created.

3 The Inference Rules

In this section, we present the inference rules. They are the same as the inference

rules in Bachmair & Ganzinger (1994), except we show how the local simplifiers

are created by inference rules, and later inherited by descendants of the clause.
Each inference rule will be of the form

cy---C,
Co



where n > 1. The substitution o is the most general unifier in the inference.
This definition means that, if C - - -}, are existing clauses, then the clause
C'o must be added to the set of clauses.

Definition 8. An inference rule is correct if, for all S such that Cy,---,C, € S
and C1,---, (), are correct in .S,

1. S Co, and

2. Co 1s correct in S.

To restrict the literals of a clause that may be involved in an inference, we
define a selection rule to select certain literals from the clause. (see Bachmair
& Ganzinger (1994), Bachmair et al (1995)). Only the selected literals may be
involved in an inference.

Definition 9. A selection rule Sel is a function from a clause C' to a subset
of the literals in C. If L € Sel(C') we say that L is selected in C'. A selection
function is valid if for each C') either a negative literal is selected in C' or all
maximal literals of C' are selected in C'.

Thus, for a valid selection rule, any clause containing a negative literal only
needs to select one literal, but it may be necessary to select more than one literal
in a positive clause. When the inference rules are given, we assume a selection
rule has been defined. A set of inference rules can be thought of as being instan-
tiated by a selection rule. It is known that a Paramodulation inference system is
complete if it 1s instantiated by a valid selection rule. No invalid instantiations
are known to be complete.

The inference rules are now stated and proved to be correct.

Resolution is an inference rule for first order logic. It is also necessary in com-
bination with paramodulation for first order logic with equality. Although, if all
literals are encoded as equations, then resolution can be encoded by paramodu-
lation.

Resolution
CVvAJe] A"V D[¥]
(CVD[(ACHACY A}, (mA, D, {=A'V D}), ¢ W' )o

where 0 = mgu(A, A’) 3, Ao is selected in (C'V A[¢])o and —A’c is selected in
A’V DY ])o.

Also, ¢’ is the same as ¢ with the following exception. For any triple in ¢ of
the form (L;, C'V A, S;) (i.e., any triple where C; contains the literal that has
been resolved upon), that triple must be replaced in ¢’ by the triple (L;,C' Vv
D,S; U{D Vv —A'}). This preserves the fact that C; C C'V D, because of the
assumption that L; € C;.

Similarly, ¥’ is the same as ¥, except that any triple in & of the form (M;, D'V
—A'T;) is replaced in ¥’ by the triple (M;, D' v C, T; U {C' V A}).

 Variables are renamed so the clauses in an inference have different variables.



Proposition10. Resolution is correct.

Proof. The premises imply the conclusion, but we must also show that the con-
clusion is correct. First we note that the second parameter of each new local
simplifier in the conclusion is a subset of the clause, because Co C (C'V D)o
and Do C (C'V D)o and each local simplifier C; or D; has been modified so that
Cio C(CV D)o and D;o C(CV D)o.

Now we must check the second condition of the definition of a correct clause.
Trivially the new local simplifiers satisfy the condition, because (C'V A)o |=
AoV Coand (=A'V D)o |= =A’eV Do. In addition, we must examine each local
simplifier that was modified by the inference. For each ground substitution 7,
there is some S < S;on such that S |= (C' VvV AV L;)on, therefore S' U {(-A’ Vv
Dyon} = C'on VvV Don V Lion. Similarly, there is some T < T;on such that
T E (D'v=A'V M;)on, therefore T U{(C'V A)on} = D'onVv ConV Myon. O

Factoring is needed in combination with resolution for completeness. How-
ever, it 18 only necessary to factor positive literals.

Positive Factoring

CVAVA[e]
(CVA[e]e

where o = mgu(A4, A") and Ao is selected in (C'V AV A [¢])o.
Propositionl1l. Posilive Factoring is correct.

The proof follows directly from the definition of correctness.

Paramodulation
CVvswt[e] Lis'lvD[¥]
(CVI[IVD[(s=t,C,{CVsmt})(sst,DV LI, {L[sTV D}, ¢, ¥ ])c

where o = mgu(s,s'), so & to is selected in (C'Vsat[e])o, L[s']o is selected
in (L[s'|V D[¥])o, tc # so, and s’ is not a variable.

Also, ¢’ is the same as ¢, except that any triple in ¢ of the form (L;, C' Vs &
t,5;) is replaced in ¢’ by the triple (L;, C’ V L[t] v D, S; U{L[s'] V D}).

Similarly, ' is the same as ¥, except that any triple in ¥ of the form (M;, D'V
L[s'],T;) is replaced in ¥’ by the triple (M;, D'V CV L[t], T; U{C V s &~ t}).

Paramodulation i1s an inference rule for first order equality that generalizes
the substitution of equals by equals. It reduces to Knuth—Bendix completion if
all clauses are unit equations.

Proposition12. Paramodulation is correct.

Proof. The premises imply the conclusion, but we must also show that the con-
clusion is correct. First, we note that Co C (C'V D)o, Do C (C'V D)o and each
C; and D; has been modified so that Cijo C (C'V D)o and D;o C (C'V D)o.
Therefore the first condition holds.



Also, we see that for all ground substitutions n, (C'V s &= t)on E (s =~
tYonV Con and (L[s']V D)on = (s #¢)onV DonV L[t]on. So trivially, each new
local simplifier satisfies the second condition. In addition, we must examine each
local simplifier that was modified by the inference. There is an S’ < S;on such
that S' = (C' Vs &~ tV L;)on, therefore S U{(L[s']V D)on} |E C'onV LitlonV
DoV Lion. Similarly, there is a 7" < T;on such that 7' = (D' Vv L[s'| vV M;)on,
therefore T U {(C'V s~ t)on} = D'onV ConV LtlonV M;on. O

In paramodulation inference systems, in order not to lose completeness, we
must either allow paramodulation into the smaller side of an equation in some
cases, or we must add an inference rule called Equation Factoring. Here we show
how the Equation Factoring inference rule would be used in our system.

Equation Factoring

CVsmtVs =t [¢]
(CVtggt Vs mt'[¢])o

where ¢ = mgu(s,s’), so & to is selected in (CVs ~tVs ~t'[¢])o, and
to # so.

Also, ¢’ is the same as ¢, except that any triple in ¢ of the form (L;,C'V s =
t,5;) is replaced in ¢’ by the triple (L;,C' Vit g t' Vs mt' | S;).

Proposition13. Fquation Facloring is correct.

Proof. The premise implies the conclusion and each C; has been modified so that
Cioc C(CVtegt' Vs mt')o. In addition, for any modified local simplifier and
ground substitution 5, there is some S' < S;on such that S" |= (C'Vs &tV L)oo,
therefore S’ E(C'Vigt' Vs mt'V Loy O

The last inference rule necessary for completeness is Equation Resolution. It
generalizes the notion of removing trivial disequations. An alternative to Equa-
tion Resolution is to add the Reflexivity axiom = & x to the set of clauses.

Equation Resolution

CVs#it]e]
(Cle' Do

where 0 = mgu(s,t) and so % to is selected in (CVs&t[e])o.
Also, ¢’ is the same as ¢, except that any triple of the form (L;, C'Vs % ¢, 5;)
is replaced by (L;, C’, S;).

Proposition14. Fquation Resolution is correct.

The proof follows directly from the definition of correctness.



4 The Deletion Rules

In this section we present some well-known deletion rules, (e.g., subsumption
and demodulation) to indicate how they are affected by the local simplifiers. The
reader will note that, unlike other theorem provers with efficiency constraints,
the local simplifier on the simplifier and subsumer do not have to be modified in
order to perform the deletion. Recall that the difference between an inference rule
and a deletion rule is that an inference rule must be performed and a deletion
rule may be performed if desired. We present deletion rules in the form:

T = 1T

where T' and 7" are sets of clauses.

This means that, if 7" is a subset of the existing set of clauses, then we may
delete all the members of T' and add all the members of 77. Generally T" and T’
have some elements in common. If those common elements exist, then we may
delete the members of T\ 7" as long as we add the members of 7"\ T". Sometimes
T will be empty, meaning that the members of 7" may be deleted without adding
anything. As in inference rules, the members of 7" are called the premises, and
the members of 7'\ T' are the conclusions. A deletion rule may be performed at
any time. We will define it so that the deleted clauses are redundant.

In addition to redundant clauses, we need to define redundant inferences
(Bachmair & Ganzinger (1994)). Redundant inferences do not need to be per-
formed, because they are not needed for the proof.

Definition15. An inference

cy---C,
Co

is redundant in S if any of Cio,---C,o is redundant or if C'c is redundant at

C,o1n S.
We define a function called height for each clause.

Definition16. For all initial clauses C, height(C') = {C}. If a clause Co is
created by the inference
Cy---C,
Co
then height(Co) = {Cpo}. However, as soon as C'o has been used in an inference
or a deletion rule, then height(Co) = {Co}.

This function will be used to show redundancy. If a clause C' i1s redundant
at height(C'), then either C' is redundant or the inference used to create C' is
redundant. In either case, C' can be removed.

Now we define what 1t means for a deletion rule to be correct.

Definition17. A deletion rule is correct if, for all S such that 7" C S and each
C'in T 1s correct in 9,



1. SECforallCeT’,

2. C'is correct in S for all C' € T", and

3. for each member C of T\T", either C is redundant at height(C') in S\TUT’
or there is a member D of S\ T'U T’ such that Do = C for some o.

If 7" = 0, cases 1 and 2 are not necessary and case 3 says that each member of
T is redundant in S.

As mentioned above, the clauses deleted by correct deletion rules are re-
dundant or were produced by a redundant inference. In this section, we will
present deletion rules which remove redundant clauses. In the section on Local
Simplification, we will present deletion rules which remove clauses produced by
redundant inferences.

The deletion rules are as follows:

Subsumption
{Cle]l, CovDI¥]} = {CL¢T}

where @ is any substitution, and ¢’ = ¢ U {(L;,C;, S;) € ¥ |C; C C}.

Subsumption is interesting because, in constrained theorem proving systems
we must remove constraints from ¢ in order to perform the subsumption, whereas
in our case we don’t have to remove local simplifiers from ¢. In fact, we may
actually add local simplifiers to .

Proposition18. Subsumption is correct.

Proof. The left premise is smaller than and implies the right premise, therefore
the right premise is redundant. But this deletion rule is slightly different from
the other deletion rules. In this rule, we modified ¢. So we must show that the
modification of ¢ is correct. The only thing that needs checking is that any
(L;, C5, S;) added to ¢ has the property that C; C C. But that must be true,
because that is the condition that allows us to add it. O

Unit Simplification

{Ll#], LOVDIP]} = {Ll[e], D[¥'D}

where @ is any substitution. B
U’ is the same as ¥, except that every local simplifier of the form (L;, L6 v
', S;) is replaced by (L;, €', S; U{L}).

Proposition19. Unit Simplification is correct.

Proof. The conclusion is implied by the premises. The right premise is redundant
in the presence of the left premise and the conclusion. We must show that the
conclusion is correct. Since the right premise is correct, we know that C’ C D.
Also, for any modified local simplifier and ground substitution 7, there exists an

S’ < Sin such that S’ |= (L8 Vv C'V L;)n, therefore S'U{Ln} = (C'V L;)y. 0O



Demodulation
{smife], LsOlvDI[¥]} = {s=t[e], LROVD[¥']}

for any substitution 8, if s6 > 6.
The local simplifier ¥’ is the same as ¥, except that every occurrence of

(L, L[s0] v €', S;) is replaced by (L;, L[t0) v €', S; U {s = t})
Proposition20. Demodulation is correct.

Proof. The conclusion is implied by the premises. The right premise is redundant
in the presence of the left premise and the conclusion. We must show that the
conclusion is correct. Since the right premise is correct, we know that C'V L[t8] C
D. For any modified local simplifier and ground substitution 7, there exists
an S < S;n such that S' = (L[s#] V C' V L;)n, therefore S" U {sn = tn} |
(LIto)v C' Vv L)y, O

We now define other deletion rules, which are often not presented in theo-
retical papers because they follow from the definition of redundancy. However,
these are rules which are often used in practice. We present them here to make
explicit the way that local simplifiers are handled. Each of the correctness proofs
follows immediately from the definition of correctness.

Tautology Deletion
{CVAV-Afe]} = 0
Proposition21. Tautology Deletion is a correct deletion rule.

This is trivially redundant, i.e., n = 0 in the definition of redundancy.

Equational Tautology Deletion
{CVvs=s[e]t = 0
Proposition22. FEquational Tautology Deletion is correct.
Thinning
{CVLVL[el} = {CVL[e]}

Proposition23. Thinning is correct.

Equational Thinning

{Cvs#slell} = {CLeTY
The local simplifier ¢’ is the same as ¢, except that any triple of the form
(L;, C"V s % 5,5;) is replaced by (L;, €', S;).

Proposition24. Fquational Thinning is correct.

Proof. The premise implies the conclusion, and the conclusion is smaller than
and implies the premise. To see that the conclusion is correct, we note that any
S’ that implies some instance of C'Vs % sV L; must also imply the same instance
of C'V L;. O



5 Local Simplification

In the previous sections we showed how the local simplifiers are generated and
how they are inherited from their ancestors. In this section, we show the sig-
nificant result of this paper. We show how the local simplifiers can be used to
perform simplifications on their associated clauses. The rules in this section are
called local simplification rules. The first rule, called Local Subsumption shows
how the local simplifiers of a clause can be used to delete that clause. The local
simplification rules Local Unit Simplification, Local Demodulation and Self De-
modulation limit the search space by simplifying a clause, and also may shorten
the length of the proof. We will have a strong and weak version of each local
simplification rule. The strong version allows us to delete a clause, while the
weak version does not.

Local simplification rules are deletion rules, which may be applied to a clause
immediately after that clause is formed by an inference. This is the reason we
have defined the function height. In practice it makes sense to simplify a clause
immediately after it 1s created. Therefore, as defined in the section on Deletion
Rules, when a clause C' is created, height(C') is set to detect if the inference
creating C' was redundant. However, an implementation may decide to perform
local simplification later. In that case, if a clause has been used in an inference
or another deletion rule, height(C') is set to detect that C' is redundant.

A Local Simplification rule is a special deletion rule that uses the information
stored with each clause to detect if the inference producing a clause is redundant.
Therefore, it 1s defined as a deletion rule. We call it a strong local simplification
if it 18 a correct deletion rule. We call it a weak local simplification if it satisfies
properties 1 and 2 of the definition of a correct deletion rule. In the case of a weak
local simplification, it is possible to add the new clauses which are generated,
but not to delete the old clauses. This could potentially be useful, because there
are some cases when a clause can be simplified even though the original clause
may not be deleted.

The first local simplification we present is called local subsumption, because
we show that a clause may be removed since a subset of it is implied by smaller
clauses. *

Local Subsumption
{CVLIel(L,Ci, ST} = 0

where 0 = mgu(L, L"), (CV L)) = CV L5, and S;0 < height(CV L[¢]). Recall
that height(C' V L{¢]) is the right premise of the inference which produced
CV L, when C'V L is created. If local subsumption is performed after C'V L is
used in an inference or a deletion rule, then the height is the clause itself. This
is a strong local simplification.

* The notation @[(L’, C;, S;)] means that ¢ contains the local simplifier (L', C;, S;).
® A special case of this is when L = L', though it is not the only case.



Proposition25. Local Subsumption is correct.

Proof. We assume that C'V L[ [(L/, Ci, Si)]] is correct. We must show that it
is redundant at height(C' V L[¢]) in S. Since it is correct, we know that for
all ground substitutions 7, there exists an S’ such that S < S;0n and S |
Lon v C;n. Since C;0n C ClnV Lbn, we know S' | Clnv Ly = CyV Ly. And
S < Sifin < height(C vV L¢])n. So C'V L is redundant at height(C'V L[¢])
insS. O

Note that it 1s not enough that the ancestor literal in the local simplifier
matches onto the literal in the clause. For instance, if we have the clause ¢(z) Vv
pla) [ (p(x), q(x), S;)] then for all ground substitutions 7 there exists an S’ < S;p
such that S' = (p(®) V q(z))n but it is not necessarily the case that S’ |
(¢(2) V p(a))n. Similarly, given the clause ¢(a) Vv p(x) [ (p(b), q(a), S;) ] then there
exists an S’ such that S’ |= p(b) V ¢(a) but it is not necessarily the case that
for every ground substitution 7, S = (¢(a) V p(z))n. So it is also not enough to
say that the literal in the clause matches onto the ancestor literal in the local
simplifier.

In local unit simplification, one of the literals in the clause may be deleted.

Local Unit Simplification

{CV LI, Gl = {(Cle' Do}

where § = mgu(L, L') and L ¢ C;. This is the weak version of local unit simpli-
fication. The strong version is when, in addition, C'8 = C.

The local simplifier ¢’ is the same as ¢, except that any local simplifier of
the form (L;,C’V L, S;) is replaced by (L;,C'V C;, 5; U S;).

Proposition26. Local Unit Simplification is correct.

Proof. We assume that C'V L[@[(L,C;, S;)]] is correct. We must show that
(C¢'])0 is correct. We see that C'V C; C C, because L ¢ C;. For every
ground substitution 7, there exists an S’ < S;0n such that 5" | C;0n Vv L'0n.
Also, there exists an S” < S;0n such that S” = C'0nV Ly V L;0n. Therefore,
STUS" ECipv C'on Vv L;ibn.

To prove condition 2, S' U {CfnV Lon} = Coy since C; C C. So the weak
version of local unit simplification is correct.

For the strong version, C0 = C' |= C V L, therefore C' V L is redundant at
height(C' V L[¢])in SU{CO}. O

As an example of the use of local unit simplification, consider the clauses pVy,
—¢ V r and —r V g If we resolve the first two clauses, we get p vV r[(q,p, {pV
a}), (=g, 7, {—¢g Vv r})]. This can now be resolved with = V —¢ resulting in p Vv
~q¢[(q,p,ArV a}), (—q, B, {—qV r,—rV =q}), (r,p,{pV r}), (-r,~q, {—~qV -r})].
Note that by definition 7, the local simplifier (—¢,—¢, {—¢ V r,=r V =¢} should
have appeared in the clause. However, by the assumption following definition 7,



the local simplifier was modified to (=g, 0, {—¢V r,—rV =¢}. We can perform a
unit simplification to remove the literal —¢ resulting in the clause p.°

To show why we need the condition that L ¢ Cj;, consider the following
example. Suppose we are given the clauses pV ¢, =g V r and —p V —¢, with ¢ >
p > r. If we resolve the first two clauses, we get pVr{(¢,p,{pVa}), (—g,r,{-qV
r})]. This can now be resolved with —p V —¢ resulting in —¢ V r [ (¢, ¢, {p V
¢,7pV =q}), (=g, 7, {=qV r}),(p, 7, {pV r}), (=P, =q, {=pV —¢})]. If we ignored
the condition, we could perform a unit simplification to remove the literal —¢
resulting in the clause r with some local simplifiers. This does not follow from
the original clauses. However, the second local simplifier allows us to perform a
local subsumption to remove the clause entirely. Of course, we could remove the
clause anyway, because it already exists.

For the strong version of Local Unit Simplification, it is not enough that the
ancestor literal in the local simplifier matches onto the literal in the clause. For
instance, if we have the clause ¢(z)V —p(a) [ (p(z), ¢(x), S;) ] then for all ground
substitutions 5, there exists an S’ < S;n such that S’ = (p(x) V q(2))n therefore
S"U{q(z)V-pla)} | q(a). So we are allowed to add the clause ¢(a) but we may
not delete ¢(#) V p(a). However, given the clause q(a) V —p(z) [ (p(b), ¢(a), Si)]
then for every ground substitution n there exists an S’ < S;n such that S U
{q(a) V =p(2)} = p(b) V q(a) but it is not necessarily the case that S* |= ¢(a).

Now we present two forms of local demodulation. The first version is similar
to local unit simplification, except that it deals with equalities.

Local Demodulation
OV L [els~t,Ci ST = {(CV L[]}

where 6 = mgu(s, s') and L[s'] € C;. This is the weak version. The strong version
is where, in addition, S;0 < height(C'V L[s'][¢]), s@ > t0, and (C Vv L[s'])0 =
Cv L[]

The local simplifier ¢’ is the same as ¢, except that any local simplifier of
the form (s % ¢,C’ V L[s'],S;) is replaced by (s % ¢,C’V L[t], S;), and any
local simplifier of the form (L;, C’V L[s'], S;) where L; # (s #t) is replaced by
(L;, C'"V C;y VL[], S; US;).

Proposition 27. Local Demodulation is correct.

Proof. We assume that C'V L[s'][¢[(s &~ t,Ci, S;)]] is correct. We must show
that (C'V L[t][¢'])8 is correct. For the case where L; is different from s # t,
we see that C' vV C; V L[t] C C'V L[t] because L[s'] € C;. In addition, for every
ground substitution 7, there exists an S* < S;fn such that S’ = (C; V s & t)0n.
Also, there exists an S” < S;6n such that S” |= (C’ Vv L[s'] V L; )#n. Therefore,
STUS"TE(C; v OV L[tV Lj)en.

The case where s & t is simpler. In that case, S” = (s %t vV C' Vv L[s']).
Therefore S” = (s %t v C'V L[t])0n.

% We will see in section 8 that the local simplifiers on unit clauses can be removed.



For condition 2, S" U{COn Vv L[s'l0n} | Con Vv L[t]0y since C; C C. This
proves the correctness of weak local demodulation.

Now we prove the strong version. Since S’ = (C; V s & ¢)fn and Cifn C
Cln, then S"U{(C'V Lit)bn}t = (C Vv L[s')bn = (C V L[s'])n. And since S’ <
Si0n < height(C Vv L' [en, C V L[s] is redundant at height(C'V L[s'| [¢])
in SU{(CVL[HFt. O

There is a generalization of the paramodulation rule called parallel paramod-
ulation. In that rule, whenever C'V s & ¢ is paramodulated with L[s']V D, every
position where s’ is a subterm of L[s'] V D, is replaced by ¢. This cuts down
the search space, especially if there are lots of clauses involving equations with
a left hand side of s. We can simulate that inference rule, because paramod-
ulation would save s & t as an ancestor literal in a local simplifier and local
demodulation would be used to apply it to all the other positions in which s’
appears.

We give an example of local demodulation. Suppose we have an ordering
where all equality predicates are smaller than all non-equality predicates. Con-
sider the paramodulation of ¢ & d Va &~ b and P(a) V Q(¢). The result is
e~ dV Pb)V Q(c)[ 1], where one of the local simplifiers in ¢1 is (a =
bye = d,{a m bV c = d}). If we then resolve this clause with =Q(¢) V R(a),
we get ¢ & dV P(b)V R(a)[p2], and 2 also contains the local simplifier
(¢ = byc ~ d,{a = bV ecm d}). Then we can apply the local demodulation
rule to simplify ¢ & d VvV P(b) V R(a) to ¢ = dV P(b) V R(b). Supposing that we
did not have the local demodulation rule. If =Q(c) was selected, we could have
instead performed a paramodulation among the clause ¢ &~ dV a & b to result in
a clause which factored out to the same clause. But we would not have known
that we could delete the clause ¢ = dV P(b) vV R(a), and if the equation ¢ &~ d
had disappeared by a later inference, we couldn’t have even done the factoring.
That illustrates the benefit of local demodulation.

For the same reasons as in local unit simplification, in order to perform strong
local demodulation we needed to require that (C'Vv L[s'])8 = C' Vv L[s']. We also
needed that S; < height(C' Vv L[s'] [ ¢]) to preserve completeness. This is so we
can guarantee that a clause is being simplified by smaller clauses.

The next version of the local simplification rule does not use the local sim-
plifier for simplification. Instead, it uses a negative equality in the clause. The
strong version of this rule is originally from Boyer & Moore (1979) and called
contertual rewriting. It does not use the local simplifiers, but we present it here
because it fits neatly into our framework.

Self Demodulation

{s#tvCOVL[elt = {(s#tvOV L[]0}

This is the weak version. The strong version is where 6 is the identity and s > ¢.
The local simplifier ¢’ is just like ¢, except that any local simplifier of the
form (L;,C"V L[s'], S;) is replaced by (L;,C' V L[t]V s % t,5;).



Proposition 28. Self Demodulation is correct.

Proof. We assume that s 3 t vV C'V L[s'][¢] is correct. We must show that
(se&tv CV L[ 1)0 is correct. Trivially, C'V L[t{]Vs#t CsgtvCVL[].
In addition, for all ground substitutions 7, there exists an S’ < S;68n such that
S" &= (C'v L[s'] v L;)0n. Therefore, S' = (C'V L[t] Vs & ¢tV L;)8n. For
condition 2, (s 6tV CV L[s'])0n |= (s % t v C V L[t])fn. For the strong version,
(s#tVCOVIinE (sé&tVvCV L[s])n, so stV CVL[s]is redundant at
height(s #tVCV L[ [e])in SU{(s®tVvCVIL[t)e}. O

6 Completeness

In this section we prove the completeness of the inference system given in this
paper. The definitions of correctness imply that the inference system is sound.
To prove completeness, we use results from Bachmair & Ganzinger (1994) and
Bachmair et al (1995).

From Bachmair & Ganzinger (1994), we get the definition of a fair theorem
proving derivation, meant to model an automated theorem prover.

Definition29. A (finite or countably infinite) sequence Sy, S1, Sa, ... of sets of
clauses is called a theorem proving derivation if each set S;y1 can be obtained
from S; by adding a clause which is a consequence of S; or by deletion of a
redundant or subsumed clause in S;. A clause C is said to be persisting if there
exists some j such that for every k > j, C' € Si. The set of all persisting clauses,
denoted Sy, is called the limit of the derivation.

Let Sel be a selection rule. Let [Is.; be the inference rules in this paper
instantiated by Sel. A set of clauses S is Sel-saturated if every inference from
Is.r applied to clauses in S is redundant in S. A theorem proving derivation is
called Sel-fair if S, 1s Sel-saturated. A derivation is called fair if it is Sel-fair
for some valid Sel.

The set of inference rules proved complete in Bachmair & Ganzinger (1994)
and Bachmair et al (1995) is just Is.; for a valid Sel, ignoring the local simpli-
fiers. Therefore, the completeness results from those papers can be used. This
illustrates the beauty of that abstract definition of an inference system. We do
not need to re—prove their completeness proof. We only need to apply it to our
situation. The way it has been applied to our situation is to show that the local
simplification rules remove redundant clauses, which we have done by showing
the correctness of those rules.

Theorem 30. Let Sy, 51,52, ... be an fair theorem proving derivation. If Sy is
unsatisfiable then O € Sy .

See Bachmair & Ganzinger (1994) and Bachmair et al (1995) for the proof
of the theorem. This says that any fair theorem proving derivation will produce
the empty clause. We must show that this completeness result applies to the



local simplification inference system. Let I be the set of deletion rules in this
paper and L be the set of local simplification rules. Then the following theorem
immediately follows from the correctness of the local simplification rules.

Theorem 31. Let Sy be a set of (undecorated) clauses. Consider the sequence
So, 51,59, ... where each S;11 s obtained from S; by applying a rule from I, L,
or D to clauses from S;. If the sequence is fair, then O € S, if and only if Sy
1s unsatisfiable.

Proof. Since the inference rules I are the same as in Bachmair and Ganzinger
(1994) and Bachmair et al (1995), the proof follows from the correctness of the
inference and deletion rules. By the correctness of these rules, each clause that
is created is correct. Therefore, each clause that is added, logically follows from
the existing clauses. Also, by definition of correct deletion rule, each clause that
is removed is redundant or the inference that has just created it is redundant.
So the proof follows directly from the previous theorem. O

7 Complexity of SLD Resolution

When restrictions on inference rules are proposed, it is generally not shown
theoretically that the restriction makes theorem proving more efficient. Ideally,
it would be helpful to show that a restriction reduces the search space. We cannot
show that theoretically in this case. But we can show theoretically that Local
Simplification reduces the sizes of the proofs in some settings. In particular, we
show that for ground horn clauses, with any selection rule, SLD resolution has a
polynomial proof (this yields a variant of an algorithm from Dowling & Gallier
(1984). However, without local simplification, we exhibit a set of clauses and a
selection rule so that SLD resolution only has exponential proofs.

A horn clause is a clause with at most one positive literal. A clause with
exactly one positive literal is called a program clause and a clause with no positive
literals is called a goal clause. SLD resolution is an inference system containing
the rules given in this paper applied to horn clauses, except that the selection rule
i1s modified so that the positive literal is selected in each program clause and a
negative literal is selected in each goal clause. Notice that the resolution inference
rule is the only one that applies to horn clauses. SLD resolution has been proved
complete for horn clauses. The SLD resolution selection rule cannot be encoded
by the selection rule in this paper. Therefore, to discuss local simplification in
SLD resolution, we must show how to use the selection rule in this paper to
show completeness of SLD resolution. First we define some sets used to give an
ordering.

Definition 32. Given a set S of clauses, we define a hierarchy of sets of positive
literals. Let My = {A|A € Gr(S)}. Forn > 0, My41 = {A|-B1V-- VB, VA€
Gr(S) and {By,---,Bn} C M, }. Let Moy = U5 Mn. If a literal A is in My,
we say that A is at level 0. If A is in M,4+1 but not in M,, we say that A is
at level n + 1. Now we define a total ordering > on the ground literals with the
property that for all positive ground literals A and B, A = B if



— Ais at level ¢, B is at level j and ¢ > j or
— A¢g Mo and B € M.

We have not specified how to compare A and B if they are both at level i for
some ¢, or if neither are in M. In those cases we do not care. The ordering is
extended to negative literals so that, for all 2, =A = B for all literals A, B at
level 7. Also A = B if and only if =4 > = B.

Using this ordering, we can prove some facts about ground horn clauses. First
we define the following sets given a set S of clauses from which My, My, Mo, - --
have been defined. Let Ty = {C'|3A € C such that A ¢ M }. Let 71 =
{C'|3-4 € C such that A ¢ My }. To = {C'|3-A4, B € C such that A is at
level i, B is at level j and ¢ > j}.

Proposition33. Let C be a ground horn clause in S. If C € Ty then C is
redundant in S.

Proof. Let C' be of the form =AV BV I" where A is at level 7, B is at level j
and i > j. Then there must be a set of clauses {Cy, -+, C,} C S which implies
B such that each C} 1s smaller than C'. Therefore C' is redundant in S. O

Proposition34. Let Cy and Cs be ground horn clauses in S. If C; € Ty UT}
or Cy € ToUTy and D 1is the conclusion of a resolution inference among Cy and
Cz, then D € To UT;.

Proof. Let C1 = I'V A and Cs = =A V A such that C'; or C5 isin Ty U Ty, If
A € M, then there exists some literal B or =B in I' or A such that B is not 1n
Meo. Therefore D € Ty UTY. If A ¢ M., then there exists some literal =B in I
such that B isnot in M., so D e Ty UT;. O

We define a selection rule to be an SLD selection rule if it selects a negative
literal in each goal clause and the positive literal in each program clause. We
define a selection rule to be a Maz selection rule if it selects a negative literal in
each goal clause and all maximal literals in each program clauses. An inference
using an SLD selection rule is called an SLD inference. An inference using a Max
selection rule is called a Maz inference. Two selection rules are called compatible
if they select the same literal in each goal clause. We have the following useful
proposition.

Proposition 35. Let Selsrp be an SLD selection rule and Selprqr be a Maz
selection rule, such that Selsrp is compatible with Selppor. If C & To UTL U Ty,
then Selspp and Selpyrqe select the same literal in C.

Proof. If C' is a goal clause, then the proposition is true by compatibility. If C
is a program clause not in 7Ty U7y UTs then C is of the form I'V A where A
is at level j for some j and each B € I' is at level ¢ for some 7 such that ¢ < j.
Therefore, A is maximal in C'. So Selyrq. and Selgpp both select A. O



Now we can prove the completeness of SLD resolution using the completeness
of Max resolution. This will show that local simplification can be performed in
SLD resolution without losing completeness.

Theorem 36. Let Sel be an SLD selection rule. Let S be a set of unsatisfiable
horn clauses. Let Sy,.51, 5%, be a Sel-fair theorem proving derivation from S.
Then O € S .

Proof. Let S* be the set of clauses formed by closing S., under non-redundant
Max inferences for some Max selection rule compatible with Sel. By proposi-
tion 35, all of these Max inferences involve some clause in Ty U 77 U T5. Other-
wise, they would have already been performed and would now be redundant. By
proposition 33, none of the Max inferences involve clauses from 7%. Therefore,
all the Max inferences involve some clause from Ty U 77. By completeness, we
know that O € S*. By proposition 34, the proof of O does not involve clauses
from Tp U T} . Therefore, O € S,. 0O

This shows the completeness of SLD resolution. These results are similar
to results from Bachmair & Ganzinger (1991). Tt shows that all the notions of
redundancy apply to SLD resolution. Therefore local simplification applies. Now
we show that any set of ground horn clauses has a polynomial local simplification
proof under any SLD selection rule. Then we will show this is not the case without
local simplification.

Theorem 37. Let S be an unsatisfiable ground set of clauses and Sel be an SLD
selection rule. Let n be the number of distinct positive literals in S. Then S has
a proof, using selection rule Sel, containing at most n + 1 clauses.

Proof. We may assume that S contains no clauses from 7Ty U771 UT5 and only one
goal clause. Otherwise, we may remove clauses to make it so without disturbing
unsatisfiability. In addition, we assume a proof where local unit simplification is
applied whenever it is applicable. Each inference performed is a resolvent among
a goal clause C' and a program clause of the form A V I'. This generates a new
goal clause D which inherits all the local simplifiers of C' with modifications and
adds one new local simplifier of the form (A4, I', {AV I'}) to the new goal clause.
Since A € Ty UT1 UT5, we know that B < A for all B € I'. For the same reason,
further inferences can only make the elements of I" smaller. Therefore, every local
simplifier whose ancestor literal is positive will be of the form (A, I',S) where
every element of I is smaller than A. That means that whenever A appears in
a clause with local simplifier (A4, I', S), 4 will be immediately removed from the
clause since A &€ I'. Therefore it will only be possible in the proof to perform one
inference containing A as a positive literal. Which implies that the length of the
proof will be the number of positive literals removed plus one for the original
clause. 0O

However, without local simplification rules, there are some sets of ground
horn clauses and SLD selection rules which only have exponential proofs. Con-
sider the following set of clauses.



—p1
1V p2Vops
P2V p3V opa

Pn-2V TPn—1V Py
Pn-1V 7Pn
Pn

Suppose that the =p; with the largest value of ¢ is selected in each goal clause.
Then each clause with a positive p; will be used fib(é) times in any proof, where
fib(3) is the i"" Fibonacci number. Therefore the proof length is exponential in
n. There are some selection rules which have linear proofs for this set of clauses
but only if negative factoring is allowed. However, it 1s impossible to know what
is a good selection rule in advance, and negative factoring is rarely used in SLD
resolution. Of course other resolution refutations always give linear proofs for
horn clauses, but they are not goal-directed.

8 Simplifying Local Simplifiers

Now we show some useful local simplifier simplifications, which either remove
local simplifiers that are no longer useful, or move local simplifiers to a place
where they will be more useful.

Suppose we have a clause of the form C'[ (L, LVC’, S), ¢]. The local simplifier
(L, LVC’, S) cannot be used for any of the local simplification rules, so we remove
the local simplifier and convert the clause to C'[¢].

If a clause is of the form C'[(L,C,S),¢], then the local simplifier (L, C, S)
is also useless, because since L depends on the whole clause it can never be used
for any local simplifications. So we remove the local simplifier and convert the
clause to C'[¢].

The above local simplifier modifications only remove information that is no
longer necessary. However, the following local simplifier simplification allows us
to use local information globally. Suppose we have a local simplifier of the form
C[(L,0,5),¢]. This says that L is true by equations less than or equal to S
and depends on nothing in the clause. A local simplifier of this form could arise,
because a local simplifier of the form (L, L, S) is converted into (L, 0, S). Since
L depends on nothing in C, it may be useful for simplifying other clauses. So we
may remove 1t from this clause and add it to a list of global simplifiers. Then
(L,0,5) may be treated as if it was a local simplifier in every clause.

For a particular example, consider a unit clause. Every local simplifier in a
unit clause either depends on the entire clause or nothing. In the first case, the
local simplifier is removed. In the second case, the local simplifier 1s moved to a
set of global simplifiers.



We note that in every case it is possible to take a local simplifier (L, C, S) and
use it as a global simplifier. However, to apply it to a clause D, it is necessary that
C' C D, which is not likely to be the case. Therefore, we think that in practice
it only makes sense to make it a global simplifier when C' = O, or possibly when
C' contains only one literal. Otherwise, the storage of it might not be worth the
limited number of times it is used.

9 Conclusion

We have shown the completeness of the local simplification inference system
in combination with a selection rule. Instead of a selection rule, most theorem
provers use other kinds of restrictions on the inference rules, like ordered resolu-
tion, hyperresolution, set of support resolution, semantic resolution, SLD reso-
lution, ordered paramodulation, strict superposition and hyperparamodulation.
All of these restrictions can be simulated by the selection rule we give. In the
next few paragraphs, we show how these inference rules can be proved complete
by encoding them with valid selection rules. Therefore the local simplification
rules apply. We discuss how the local simplification rules affect the efficiency of
each selection rule.

Ordered resolution is the resolution inference system where all maximal lit-
erals are selected in each clause. Local simplification has a limited benefit for
ordered resolution. For a ground clause C'[(L;, Ci, Si), ¢] formed by ordered
resolution, all literals in C; are less than L; and C; < S;, so the local simplifi-
cation rules have no benefit. will never be able to be used This illustrates the
reason that ordered resolution is an efficient inference rule. It prevents the need
to resolve a literal in a clause which was already resolved and removed by an an-
cestor of the clause. Strict superposition is the paramodulation inference system
where all maximal literals are selected in each clause. The above property for
ordered resolution is no longer true in this settings, so the local simplifications
rules are useful there. Therefore, we believe that the greatest benefit of local
simplification is in the paramodulation setting.

Local simplification has more of a benefit when combined with the other
resolution restrictions. Many of them are goal directed, so they cannot have the
property mentioned of ordered resolution above. Local simplification can be seen
as a way of partially retrieving that property.

Hyperresolution is another useful restriction for first order logic. It is a reso-
lution inference system which resolves all the negative literals in a clause at the
same time, by positive clauses (clauses containing only positive literals). The
conclusion of a hyperresolution inference i1s a positive clause. Hyperresolution
can be simulated by a selection rule which always selects some negative literal
if a clause has one. This generates intermediate clauses, but each intermediate
clause has a negative literal selected so it cannot be used for anything else but
an intermediary of a hyperresolution inference. The local simplification rules are
helpful in combination with hyperresolution. Hyperparamodulation is the infer-
ence system where all negative literals in a clause are paramodulated into by



positive clauses until another positive clause results. This can be viewed as one
inference as in hyperresolution. Or it can be encoded like hyperresolution, where
a negative literal is selected whenever possible and lots of intermediate clauses
are added which can only serve as intermediate clauses.

Semantic resolution is an inference rule where a model I is given and no two
clauses are resolved if they are made true by I. In set of support resolution, no
two initial clauses are resolved if they are made true by I. These two inference
rules can be shown equivalent to hyperresolution under an appropriate mapping
from literals true in I to negative literals. The mapping is the following. Con-
sider a set S of ground clauses and I a model. Let S’ be a new set of clauses,
except that each literal L in S which is made true by [ is mapped to a literal
—Ar in S’ and the complement of L is mapped to Ar. Then S is satisfiable
if and only if S’ is satisfiable and hyperresolution from S derives the empty
clause if and only if semantic resolution from S’ derives the empty clause. This
proves that semantic resolution is complete in the ground case. Therefore, by a
standard lifting argument, semantic resolution is complete in general. This same
argument proves that set of support resolution is complete. These arguments do
not work for equality because paramodulation inferences are not preserved by
the translation. In fact, set of support paramodulation is not complete.

In section 7, we showed how to simulate SLD resolution. We also showed
that for every selection rule, every ground set of unsatisfiable horn clauses has
an SLD refutation (with local simplification) that is linear in the number of
literals. However, we exhibit an unsatisfiable set of horn clauses and a selection
rule where every SLD refutation (without local simplification) is exponential
in the number of literals. Other resolution proof strategies always have linear
refutations for horn clauses, but they are not goal directed.

Model elimination theorem provers (Loveland (1968), Loveland (1978)) also
employ the strategy of saving literals involved in a resolution, so that they can
be used to simplify the clause. In model elimination, there are two kinds of
literals: B-literals which are the literals in the clause and A-literals (ancestor
literals) which are the literals we put in local simplifiers. In model elimination,
the literal resolved against is stored as an A-literal. The position of the A-literal
in the clause tells which literals it can simplify. In local simplification, we use the
second parameter of the local simplifier to tell which literals can be simplified.
The reduction rule of model elimination is similar to the weak unit simplification
rule given in this paper. We show how to do this in a resolution framework and
show that local simplification is compatible with restrictions and deletion rules. It
is our strong local simplification rules that exploit redundancy criteria and allow
clauses to be removed. We show local simplification in a paramodulation setting,
combined with the other known restrictions of paramodulation and deletion
rules. The reduction rule from Model elimination with Paramodulation 1s similar
to weak local demodulation, however function reflexivity and paramodulation
into variables is required for completeness and 1t is not compatible with deletion
rules or rewrite techniques (Loveland (1978)).

In this paper, we take advantage of the powerful redundancy criteria of Bach-



mair & Ganzinger (1994). We save equations as ancestor when each clause is
created. We show how to pass that information to the descendants as more in-
ferences are performed. Then we show how to use this information to simplify
clauses. The intent is to gain some of the power that simplification provides in
completion procedures. Other recent work shows how constraints can reduce the
search space of theorem proving procedures (see Bachmair et al (1995), Lynch
& Snyder (1995), Nieuwenhuis & Rubio (1995), Nieuwenhuis & Rubio (1992),
Nieuwenhuis & Rubio (1994), Lynch & Snyder (1994), Vigneron (1994)). The
results of this paper have a nice feature which is not exhibited in constraint the-
orem provers. That is the fact that we don’t need to weaken the local simplifiers
in order to perform simplification or subsumption or any other deletion rule. If
we were to combine local simplification with basic paramodulation, we would
need to weaken constraints to perform deletion rules. However, we believe local
simplifiers would be useful in combination with the blocking rule from Bachmair
et al (1995). We hope that this paper will inspire other work on theorem proving
procedures which inherit information used to limit the search space.
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