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Acceleration of XML Parsing Through 
Prefetching 

Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and Jean-Luc Gaudiot, Fellow, IEEE 

Abstract—Extensible Markup Language (XML) has become a widely adopted standard for data representation and exchange. 

However, its features also introduce significant overhead threatening the performance of modern applications. In this paper, we 

present a study on XML parsing and identify that memory-side data loading in parsing stage incurs a significant performance 

overhead, at the same level as computation. Hence, we propose memory-side acceleration with the incorporation of data 

prefetching techniques, which can be applied on top of computation-side acceleration to speed up the XML data parsing. To this 

end, we study the impact of our proposed scheme on the performance and energy consumption and find out that it is able to 

improve performance by up to 20% as well as produce up to 12.77% of energy saving when implemented in 32nm technology. 

In addition, we implement a prefetcher on FPGA platform in an effort to evaluate its implementation feasibility in terms of area 

and energy overhead.   

Index Terms— XML Parsing, Prefetching, Hardware Acceleration.  

——————————      —————————— 

1 INTRODUCTION

xtensible Markup Language (XML) is emphasized for 
its language neutrality, application independency and 
flexibility, and thus has been adopted as the standard 

in data exchange and representation. For example, the 
International HapMap project uses XML schemas to rep-
resent the common patterns in human DNA sequence [6]. 
Although XML is prevalent with many benefits, due to its 
verbosity and descriptive nature, XML parsing has intro-
duced heavy performance overhead [1, 2]. Generally, 
XML parsing is both memory and computation intensive. 
It consumes about 30% of processing time in web service 
applications [4], and has become a major performance 
bottleneck in database servers [5]. A real-world example 
would be Morgan Stanley’s Financial Services system, 
which spends 40% of its execution time on processing 
XML documents [3]. This is only going to get even worse 
as XML dataset get larger and more complicated.  

To improve the performance of XML processing, most 
existing proposals are dedicated to make acceleration 
from computation side. However, in this paper, we 
demonstrate that memory access acceleration is equally (if 
not more) important compared to computation accelera-
tion. Therefore, different from previous computation ac-
celeration studies, we propose to accelerate XML parsing 
from the memory-side with the incorporation of data 
prefetching techniques. Unlike computation-side accelera-
tion, which has a strong dependency on the parsing mod-

el, memory-side acceleration is generic and can be ap-
plied irrelevant of the parsing model underneath. In addi-
tion, its combination with computation-side acceleration 
will largely relieve the performance pressure incurred by 
XML parsing. 

Note that our long-term goal is to develop a dedicated 
XML parsing core, which consists of a computation accel-
erator and dedicated prefetching logics.  With the compu-
tation accelerator, we can develop specialized instructions 
to accelerate the computation of XML parsing; with the 
dedicated prefetching logics, we would avoid data pollu-
tion from other workloads, and keep feeding data to the 
computation accelerator.  This core should eventually be 
one of multiple specialized cores in a heterogeneous 
many-core chip, and acts as the Data Exchange Frontend 
(DEF), efficiently (in terms of power and performance) 
parsing the incoming XML data, and then passing the 
output to other cores for further processing.   

To this end, we address the following questions in this 
paper: first, is memory access overhead indeed the same 
performance bottleneck for XML data parsing as that 
from computation? Second, how much can memory-side 
prefetching techniques improve the performance of XML 
parsing? Third, is it feasible to implement these tech-
niques in hardware considering its energy and hardware 
cost? 

The rest of this paper is organized as follows: before 
answer those three questions, in Section 2, we first review 
related research work on XML parsing techniques and 
prefetching techniques. In Section 3, we describe the 
methodology of our study. Then in Section 4, we present a 
performance study of XML parsing under both native and 
managed environments. To answer the first question, in 
Section 5, we evaluate the performance of XML parsing 
and identify the performance bottleneck. To answer the 
second question, in Section 6, we delve into our proposal: 
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memory-side acceleration of XML parsing. We propose to 
use hardware prefetching to break the performance bot-
tleneck on the memory side and messure what the im-
provement is. To answer the third question, in Section 7, 
we study the implementation feasibility of the memory-
side acceleration. As a further verification, in Section 8, 
we make a case study by implementing one prefetching 
engine on FPGA platform and exploiting its hardware 
overhead as well as energy consumption. Finally, we con-
clude and discuss our future work in Section 9 and Sec-
tion 10 respectively.    

2 BACKGROUNDS     

In this section, we review XML parsing techniques, 
prefetching techniques as well as related studies on soft-
ware and hardware acceleration for XML parsing.  

2.1 The XML Parsing Process 

XML parsing is a process that scans through the input 
XML documents, breaks them into small elements, and 
builds corresponding inner data representation. It is a 
pre-requisite for any processing of an XML document 
because an XML document has to be parsed before any 
other operations can be performed. However, XML pars-
ing is also very expensive due to the high overhead in-
curred by both computation and memory access.  

 

Figure1: XML Parsing Process 
 

Usually, XML data parsing consists of three steps: char-
acter conversion, lexical analysis and syntactic analysis, as 
shown in Figure 1. The first parsing step, character conver-
sion, converts a bit sequence from source XML document 
into the character sets that are host programming lan-
guage dependent. The second parsing step, lexical analysis, 
partitions the character sets into subsequences called to-
kens, like start element, text, and end element. Each token is 
defined by a regular expression in the World Wide Web 
Consortium (W3C) XML specifications [8]. The third pars-
ing step, syntactic analysis, verifies the structure of tokens 
by checking that they have been properly nested. It is 
usually implemented by pushdown automaton (PDA). After 
syntactic analysis, the PDA organizes tokens into different 
data representations available for subsequent accesses or 
modifications via various application programming inter-
faces (APIs) provided by different parsing models. The 
first two steps stay the same among different parsing 
models. However, the third step, syntactic analysis, exhibit 
variable behaviors when different parsing model is ap-
plied [6]. 

2.2 XML Parsing Modeling  

Based on how inner data structure is represented, there 

exist two categories of XML parsing models: event-driven 
parser and tree-based parser.  

On one hand, event-driven parser simply parses the 
document and associates any tag it finds along the way 
with corresponding event, including the start and end of 
the document, finding a text node, finding child elements, 
and hitting a malformed element. It transmits and parses 
XML infosets sequentially at runtime. The parser itself 
does not store any information of the XML document, so 
that the application can just access partial data before 
parsing is completed. As a result, event-driven parser has 
an enviably small memory footprint and low latency, 
making it suitable for streaming or forward-only applica-
tions. Event-driven model can be further divided into two 
classes: pull parser and push parser, according to the par-
ser-application interaction. Simple API for XML (SAX) [7] 
adopts the push model, which uses callback functions to 
report all the events from the parser to the application. In 
contrast, StAX [34] adopts the pull model, in which clients 
pull XML data when it is needed so that it can skip unin-
terested events. As shown in upper part of Figure 2, SAX 
parses the XML document and then pushes the XML in-
formation into application in terms of SAX events.  

On the other hand, tree-based parser reads the entire 
content of an XML document into memory and creates an 
in-memory tree structure to represents parent-child-
sibling information. Only after parsing is complete, con-
structed trees can be navigated freely and parsed arbitrar-
ily for the duration of the document processing, which 
makes this parser suitable for massive and frequent up-
dates. This flexibility, however, comes at a great cost of 
potentially large memory requirement and significant 
access delay, especially when large document is processed. 
Document Object Model (DOM) [8] is the official W3C 
standard for tree-based parser. As shown in bottom part 
of Figure 2, DOM parser processes XML data, creates an 
object-oriented hierarchical representation of the docu-
ment and offers the full access to the XML data. In this 
study, we focus on the two most popular parsing models, 
namely, SAX and DOM. 

 

Figure 2: SAX and DOM Parsing Flow 

 

2.3 Prefetching Techniques 

Data prefetching has been proposed as a speculative 
technique to bridge the speed gap between CPU and 
memory subsystem. It alleviates the performance degra-
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dation from the long-latency memory accesses by predict-
ing the memory access pattern of the application and 
speculatively prefetching data that would be used in fu-
ture computation. Considering that the CPU-memory 
performance gap is on the order of hundreds of processor 
clock cycles, prefetching is an attractive way to remove 
the affect of long latency memory accesses.  

2.3.1 Classic Prefetching Algorithm 

Prefetching tehniques has been well studied  and lots of 

algorithms have been proposed. We list some classic 

prefetching algorithm s below. 

Sequential prefetching prefetchs the block or blocks that 
follow the current demanded block, and is fit for the pro-
grams with the consecutive memory access pattern [36, 
37]. As an improvement, Sequential tagged prefetching [51] 
issues a prefetch upon a cache miss as well as when a 
prefetched block is referenced for the first time, thus it 
requires an extra bit per block to mark the prefetch state. 
The Sequential prefetching family increases the perfor-
mance on a broad range of applications at a low cost, 
however, at the expsense of many useless prefetches. 

Stride prefetching makes prefetch requestes according to 
the observed strides that separate memory addresses flow. 
Conventional stride prefetching uses a record table indexed 
by the program counter (PC) that associates strides to the 
loads following this kind of memory access pattern [38, 
48]. If address a is referenced by a load that hits in the 
table, the matching entry indicates that the load is follow-
ing a stride pattern, then prefetcher issues the request for 
addresses a+s, where s is the associated stride.  

Strem Prefetching traces a sequence of nearby misses 
when their addresses follow the same positive or negative 
direction in a small memory region [39, 40]. In some de-
sign [39], there always exsites a streaming buffer to store 
the fetched data.  

Correlating prefetching predicts fu ture addresses from 

tables that record  the past memory program behavior [49, 

50]. Usually, it generalizes the stride table by registering 

the stream of addresses associated  either to the load  PC or 

to an address that misses in the corresponding cache level. 

In correlating prefetchers，mega-sized  tables are needed  

to record  enough information. Thus, it can provide good  

prefetch results to a broader range of applications. How -

ever, it is associated  with considerable hardware cost.  

2.3.2 Software Prefetching Vs. Hardware Prefetching  

According to how prefetching is implemented , it can be 

classified  into two classes: software prefetching and 

hardware prefetching. 

 Software Prefetching 

Software prefetching [35, 44, 46] need to introduce new 

prefetching instructions into the instruction set architec-

ture (ISA), which could  bring data at speicified  memory 

addresses into cache. It is assisted  by compiler algorithms 

to insert software prefetching instructions into proper 

places of the source code. In the preprocessing stage, 

compiler gets the global information about memory data 

access pattern, locates those data-sets that are lean to-

wards cache misses and calculates the positions to insert 

the prefetching instruction. In Intel® Pentium® 4 proces-

sor, it enables using the four prefetch instructions intro-

duced with Streaming SIMD Extensions (SSE). These in-

structions are hints to bring a cache line of data in to vari-

ous cache levels. 

Since software prefetching gets the assistance from 

compiler or programmer, it can acquire a globle map of 

data accesses, handle irregular access patterns and make 
more precise prefetchings. However, the insertion of the 
prefetching instruction is statically determined so soft-
ware prefetching can not adapt to the phase change of the 
application. Since new instructions need to be added, 
recompilation is required, so these do not benefit the sce-
narios where recompilation is inconvenient. 

 
 Hardware Prefetching 

Different from software prefetching that statically in-
serts prefetching instructions by compiler, hardware 
prefetching frees the need to expand instruction set archi-
tecture and frees the compiler from revising the source 
code of applications. It automatically determines the data 
accesses that might cause cache misses and then make 
pretching requestes. Its decision is based on the recorded 
history information so that it can adapt to the phase 
change of application. However, it must comsume extra 
hardware resource and is unable to gain a complete pic-
ture of the whole memory pattern. Therefore, it does not 
suit for the case of irregular data access and short arrays 
for the penalty of history start-up. In our study, we focus 
on hardware prefetching for its advantage of no revise of 
the source code.  

2.4 Overview of Hardware Prefetcher  

In this subsention, we present the system integration 
and detailed architecture of hardware prefetcher. 

2.4.1 System Integration of Hardware Prefetcher  

As a speculative techinique, hardware prefetching can 
locate in any cache layer. Since modern processor has 

taken multi-layer cache hierarchy to hid e the long la-

tency memory access, multi-level prefetcher may give 

more performance improvement, considering its effect 

in each level applied . For example, as shown in Figure 3, 
we can have a L1 cahce prefetcher which requests data in 
L2 cache into L1 cache, a last-level cache (LLC) prefetcher 
which prefetches the requested data in memory into last-
level cache, and a memory prefetcher which communi-
cates between memory and disk, reducing the time used 
for disk accesses.  However, most modern processors per-
form out-of-order (OoO) execution, so that the latency of 
L1 cahce miss can be tolerated by the architecture im-
provement. Therefore, it is arguable to apply prefeting in 
L1 cache level. For the last level cache, its cache miss la-
tency is determined by the time used for memory access, 
which is on the order of hundred of processor cycles 
nowadays. Here, the applying of prefetching can hide 
several long latency memory accesses, resulting consider-
able performance improvement, especially for memory-
intensive applications. It also can be seen in Figure 3 that 
the prefetched data are usually sent into the low level 
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cache directly. However, to reduce the chance of cache 
pollution, some researchers proposed to cache the 
prefetched data into an extra buffer [44, 45]. As a result, 
the competition for limited cache lines is alleviated at the 
cost of additional hardware overhead. 

 

Figure 3: System Integration of Prefetcher 

2.4.2 Architecture of Hardware Prefetcher  

Hardware prefetcher utilizes hardware resources in 
order to load useful data ahead of time. As shown in left 
part of Figure 4, the flow of cache miss or cache access is 
passed into hardware prefetcher, which can be considered 
as the trigger set of the prefetching. Then prefetcher re-
quests data through predicting future accesses and issu-
ing prefetch requests into lower memory hierarchy. When 
request is fulfilled, those returned data are forwarded into 
upper hierarchy where cache flow is collected or addi-
tional prefetching buffer.  

As in the right part of Figure 4, we can obtain the ge-
neric architecture of hardware prefetcher. The trigger set, 
regardless it is collected as cache access or cache miss, is 
passed into history recorder and corresponding infor-
mation is captured based on the algorithm applied. Usu-
ally, the flow can be recorded by a particular program 
counter value, being the memory activities of the same 
instruction; or by a constant time slot, being the time-
sliced memory behavior.   

 

Figure 4: Architecture of Generic Prefetcher 

 

Prefetching engine (PE) fetches the recorded information 

from the history recorder and  makes prediction by consid -

ering memory behavior relations. There have been a lot of 

relations considered  by d ifferent prediction algorithms, 

e.g., Sequential Prefetching, Stride Prefetching, Stream 
Prefetching and Correlation Prefetching as we mentioned 
earlier. 

There are also some optional modules inside prefetch-
ing engine to control the precision and aggressiveness of 
the prefetcher. The aggressiveness module can be used to 
tune the number of triggered requests through optimiz-
ing the prefetching degree or prefetching distance. The 
confidence module can be used to diminish the oppor-
tunity of unsuccessful prefetching. It checks the confi-
dence recording and excludes those requests whose con-
fidence is below certain threshold. The combination of 
these optimization modules can produce benefits as well 
as side effects such redundant prefetchings. Since the 
coverage of prefetching can overlap with that of demand 
access and the adjacent prefetching may request data 
within the same block, there come several redundancies 
that might lead to fruitless accesses and bandwidth waste. 
Corresponding to that, the request filter component is in-
troduced. When system bandwidth support is limited, 
most of those redundant accesses can be captured and 
filtered by the request filter, yielding less ineffectiveness. 

2.5 Related Work on XML Acceleration 

There have been several proposals on mitigating the per-
formance overhead of XML processing.  

In software community, several research groups em-
ployed the concept of binary XML to avoid performance 
bottleneck of XML parsing [1, 9, 10]. For example, VTD-
XML parser [10] parses XML documents and creates 64-
bit binary-format VTD records. However, its parsed bina-
ry data cannot be used by other XML applications direct-
ly.  On the other hand, some researchers focus on parallel-
izing the parsing process with the presence of parallelism 
within modern processor or parsing itself. Prescanning-
based parallel parsing model [11] builds a skeleton of the 
XML document to guide partitioning of the document for 
parallel data processing. Also, in [12] Head et al. exploited 
the parallelism by dividing XML parsing process into 
several phases, so that they can schedule working threads 
to execute each parsing phase in a pipelined model. In 
addition, Parabix exploits the SIMD capabilities of com-
modity processors to process multiple characters simul-
taneously [13].  

In the hardware community, based on the profiling 
analysis, Zhao et al. incorporated new instructions with 
special hardware support to spedup certain frequently-
used operations of XML parsing [14]. In [15], Moscola et 
al. presented a technique to automatically map regular 
expressions directly onto FPGA hardware and imple-
mented a simple XML parser for demonstration. Howev-
er, since XML syntax rule is not a regular language. XOE 
[16] accelerates XML document parsing via offloading 
some fundamental parsing functionalities like tokening 
onto a special XOE engine. XPA [17] is another XML pars-
ing accelerator implemented on FPGA, capable of per-
forming XML well-formed checking, schema validation, 
and tree construction. It can reach up to 1 cycle-per-byte 
throughput for XML parsing. Nevertheless, their design 
works only for tree-based parsers. As we will show in the 
following sections, memory access is one of the major 
bottlenecks of XML parsing, thus we will be able to gen-
erate extra performance gain by memory-side accelera-
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tion on top of all those computation-side acceleration 
proposed previously. In addition, unlike computation-
side acceleration that can be only applied to specific pars-
ing model, memory-side acceleration is generic and can 
be prevalently adopted to enhance the effectiveness of 
XML parsing, regardless of the parsing model under-
neath. 

3 METHEDOLOGY 

In this section, we discuss our methodology to study the 
performance of XML parsing, covering the benchmarks 
we selected and the tools we employed.    

3.1 XML Parsers and Benchmarks 

In order to make fair comparison, we choose XML parser 
implementations of both event-driven and tree-based 
models from Apache Xerces [18]. Apache Xerces provides 
SAX and DOM XML parsers, and has implementations of 
these two models in both native (C++) and managed (Ja-
va) environments. This allows us to perform a thorough 
study to understand the performance of SAX and DOM 
models in different execution environments.  

As for inputs to the XML parsers, we have selected 
seven real world XML documents of varying sizes (rang-
ing from 1.4 KB to 113 MB) and complexities as input data, 
which are listed in Table 1. Specifically, personal-schema is 
a very simple document with flat structure, thus the pars-
ing process is straightforward; on the contrary, standard is 
a long document with deep structures, which complicates 
the parsing process. 

TABLE 1: BENCHMARKS 

 

3.2 Performance and Memory Modeling 

To study the performance of the memory-side accelera-
tion, we utilize CMP$IM [19], a binary-instrumentation-
based cache simulator developed by Intel. CMP$IM is 
able to characterize cache performance of single-threaded, 
multi-threaded, and multi-programmed workloads. The 
simulation framework models an out-of-order processor 
with the basic parameters outlined in Table 2. 

  To understand the implementation feasibility of the 
memory-side accelerators, we need to model the energy 
consumption of these designs. For this purpose, we em-
ploy CACTI [20], an energy model which integrates cache 

and memory access time, area, leakage, and dynamic 
power. Using CACTI, we are able to generate energy pa-
rameters of different storage and interconnect structures 
implemented in different technologies. Note that the 
overall system power consumption consists of two com-
ponents: static power and dynamic power. Static power is 
generated by the leakage current of the transistors, and it 
persists regardless of the swithing state of the transistors. 
On the other hand, dynamic power is incurred only when 
the transistors are actively switching. In this paper, we 
use CACTI to model both static and dynamic power to 
evaluate the implementation feasibility of memory-side 
accelerators.    

TABLE 2: SIMULATION PARAMETERS 

Frequency 1 GHz 

Issue Width 4 

Instruction Window 128 entries 

L1 Data Cache 32KB, 8-way, 1cycle 

L1 Inst. Cache 32 KB, 8-way, 1cycle 

L2 Unified Cache 512 KB, 16-way, 20 
cycles 

Main Memory 256 MB, 200 cycles 

Frequency 1 GHz 

 

3.3 XML Parsing Bottleneck Evaluation 

Since XML data have been floated in cloud environment, 
with carefully designed study of the cloud data through-
put, we can find whether the network data exchange 
stage determines the performance of XML parsing. To 

study the network performance, we measured  the data 

exchange throughput of two different cloud data services: 

Content Distribution Network (CDN) and Cloud Storage, 

which are two popular categories of modern cloud data 
services. 

To study the behavior in disk data loading stage, we 
make use of the Xperf Performance Analyzer tools [25]. 
Xperf belongs to Windows Performance Analysis Toolkit. 
It can be used  to monitor system performance on Win-

dows OS, as it is specifically designed to give a complete 

system-wide view of performance over long period  of 

time. With the help of Xperf, we can capture disk I/O 
throughput and determine if it is the bottleneck in pars-
ing execution.  

3.4 FPGA based Case Study 

To further study the feasibility of memory-side accelera-

tion, we make a case study by implementing one accelera-

tor design on a Xilinx Spartan-3 FPGA board  [41]. In d e-

tail, we implemented  the design in Verilog, synthesized  

the design, and then used  the XPower Analyzer [42] to 

generate power consum ption information. Since the de-

sign we choose to implement is the most complicated  

hardware prefetcher, with the FPGA implementation, we 

can get the upper limit of energy consumption, chip area 

overhead and hardware cost for memory-side accelera-

tion.  

Name Size 
(KB) 

Description 

Long 65.7 sample XML SOAP file 

mystic-library 1384 
Information of library 

books 
personal-

shema 1.4 
personal information data 

physics-
engine 1171 

configuration data for 
physics simulation 

resume_w_xsl 51.8 personal resume 

test-opc 1.8 
xml test file for web ser-

vices gateway 
Standard 113749 bank transaction records 
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4 NATIVE VS. MANAGED EXECUTION  

In this section, we compare the performance of XML pars-
ing under managed and native environments. We execut-
ed XML parsers on a dual-core machine running at 2.2 
GHz and used the Intel Vtune analysis tool [21] to capture 
the overall execution time. The results are shown in Fig-
ure 5, in which we take the performance of native execu-
tion as the baseline. The x-axis shows the seven bench-
marks and the y-axis shows the percentage of the excess 
execution time incurred by the managed layer (in this 
case JVM). It is obvious that when parsing with SAX 
model, managed execution produces high performance 
overhead. For instance, when parsing test-opc and mystic-
library, the managed middle layer contributes 41.67% and 
38% performance overhead respectively. Even in the best 
case, long, the middle layer still incurs 20.73% perfor-
mance overhead. The situation is not so good either when 
using DOM parsing model. Even the best case physics-
engine has incurred 25.93% performance overhead. In the 
worst case, resume_w_xsl, it incurs up to 52.08% perfor-
mance overhead.  
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Figure 5: Managed Execution vs. Native Execution 
 

Although managed environment is able to reduce de-
velopment time, in a common application scenario, XML 
parsers reside at the forefront of the XML data processing 
and many other components in the system may have de-
pendency on the outputs of the XML parsers. Therefore, 
the performance overhead incurred by the managed layer 
would severely hinder the performance of the entire sys-
tem. In addition, in large-scale systems (such as those in 
cloud computing environments), this large performance 
overhead also leads to energy consumption overhead. 
This result indicates that managed execution of XML 
parsing is not suitable in large-scale computing environ-
ment (e.g. cloud computing environment), considering the 
significant overhead it introduced. Henceforth, for execu-
tion and energy efficiency, we focus on native execution 
of XML parsing in the rest of the paper. 

5 PERFORMANCE ANALYSIS OF XML PARSING 

In this section we aim at determining the performance 
bottleneck of XML parsing by studying the throughput of 
XML parsing at different stages of the information 

passing flow, including network data exchange, disk I/O, 
and memory accesses. Figure 6 shows the data flow of 
XML parsing: first, data is loaded from either network or 
local hard disk. Then, data flows into the memory 
subsystem: main memory, L2 and L1 caches. At the end, 
the processor fetches data from cache and performs the 
actual computation.  

 

Figure 6: Data Flow of XML Parsing  

  

5.1 Network Data Exchange 

To study the network performance, we measured the data 
exchange throughput of different cloud data services. In 
Table 3，we summarize our measurements of two popu-
lar categories of cloud data services: Content Distribution 
Network (CDN) and Cloud Storage. For each category, we 
measured the data exchange throughputs from four dif-
ferent service providers. Note that CDN services contain 
several copies of data in the network to maximize band-
width, whereas Cloud Storage services provide online 
storage where people can require their storage capacity 
for their data hosting needs. On average, the data ex-
change throughput of CDN services is around 29.26 Mb/s. 
When employing the CDN service provided by Amazon 
CloudFront, the rate can reach 48.85 Mb/s. On the other 
hand, the average data exchange throughput of Cloud 
Storage services is 12.56 Mb/s and its best case, provided 
by Amazon S3 – US East, can reach 21.8 Mb/s. In our ex-
periment, our machine contains a 100 MB/s Network In-
terface Card and the network it connects to has a band-
width limit of 100Mb/s, which is far greater than the 
throughput provided by cloud data services. This indi-
cates the network I/O interface is not fully utilized, and 
thus the network interface is not likely to be the bottle-
neck of XML parsing operations.  

TABLE 3: CLOUD SERVICE DATA RATE  

CDN Service Cloud Storage Service 

Provider 
Rate 

(Mb/s) Provider 
Rate 

(Mb/s) 

Akamai CDN 27.50 
Amazon S3 - 

US East 21.80 
Amazon 

CloudFront 48.85 
Amazon S3 - 

US West 10.31 

Cotendo CDN 27.72 
Azure-South 
Central US 6.97 

Highwinds 
CDN 12.97 Nirvanix SDN 11.17 

Average 29.26 Average 12.56 
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5.2 Disk Data Loading  

We used the XPerf Performance Analyzer tools [25] in 
order to capture disk I/O throughput when running the 
XML parsers using the standard benchmark. To get the 
precise I/O throughput data, we start from a clean envi-
ronment and make sure the XML data was not already in 
the cache. The collected results are shown in Figure 7: the 
x-axis shows the execution timeline in seconds and the y-
axis shows the amount of triggered disk I/O operations 
during the execution. The gray curve overlaid on top of 

the bar diagram indicates the CPU usage information. 
The peak of the curve means the CPU is fully utilized. 
Figure 6 shows that most of the time disk I/O is in un-
derutilized state, which means the I/O subsystem rarely 
needs to reach its full capacity. Based on this observation, 
it can be concluded that disk I/O is also not likely to be 
the bottleneck of XML data processing. We also ran the 
XML parsers with other benchmarks from Table 1, and 
the results were similar.  

 

Figure 7: Disk I/O Counts and CPU Usage  

  

5.3 Data Loading from Memory Side 

Finally, we studied the overhead produced by memory 
data loading stage. Here, memory data loading refers to 
the data flow starting from main memory, going through 
each cache layer and finally fetched into CPU. In order to 
make a comparison, we measured the CPI (cycles per in-
struction) of Speed-test, which is a computation-intensive 
CPU stress test application with negligible memory ac-
cesses; and we measured the CPI of native XML parser 
using the standard benchmark, which is the large XML 
document with a lot of memory accesses. The CPI of 
Speed-test is 0.80. Using the SAX parser, the CPI of stand-
ard is 1.27, which introduces 58.75% overhead compared 
to Speed-test; using the DOM parser, the CPI of standard 
becomes 1.42, which introduces 77.5% overhead com-
pared to Speed-test. In addition, when using other bench-
marks shown in Table 1, we obtained similar performance 
data as that of standard.  

  As a further validation, we measured the miss count 
per kilo instructions (MPKI) of both L1 and L2 cache lay-
ers, which are nearly 10 and 2 respectively for standard. 
This means for every 1000 instructions there come about 
ten L1 and two L2 cache misses. On the other hand, the 
Speed-test has a L1 MPKI of 0.051, and a L2 MPKI of 0.072. 
The large number of cache misses mainly contributes to 
the CPI increase of XML parsing. Compared with the CPI 
of Speed-test, the extra cycles consumed by XML parsing 
may indicate that memory data loading stage incurs a 
significant amount of overhead to the execution.         

5.4 Summary  

In summary, the results from the previous three subsec-
tions show the following:  

 First, network I/O throughput can easily reach 
over 15 MB/s, and this is far below the 100 MB/s network 
bandwidth limit, showing that network I/O is far from 

being stressed and network data exchange is not likely to 
be the bottleneck of XML parsing. 

 Second, our experiment results show that the 
disk I/O subsystem is underutilized most of the time, 
which means disk data loading of XML data parsing is 
within the coverage of disk I/O subsystem and cannot be 
the bottleneck of execution as well.  

 At last, comparing CPI data of XML parsing 
workloads with a CPU stress test workload, we have 
found that in some cases the CPI of XML parsing almost 
doubles that of the CPU stress test. Upon further analysis, 
we have found that the high cache miss rate on both L1 
and L2 caches is the main contributor to this CPI increase.  

Recall in Figure 6 that gives the data flow of XML pars-
ing, we can draw the results that: the performance bottle-
neck of XML parsing is the memory data loading stage, 
rather than the disk data loading stage or the network 
exchange stage. In other words, the overhead introduced 
from memory subsystem really hits the weakness of the 
XML data parsing. Therefore, in order to speed up the 
XML parsing execution, it is imperative to turn around 
the focus of acceleration and reduce the overhead in-
curred by the memory subsystem.   

6 MEMORY-SIDE ACCELERATION  

We have identified that memory accesses impose signifi-
cant overhead in XML parsing workloads. Similarly, a 
study released by Intel verifies that memory accesses con-
tribute to more than 60% execution cycles of the whole 
parsing process [22]. Furthermore, another empirical 
study done by Longshaw et al. has shown that loading an 
XML document into memory and reading it prior to pars-
ing may take even longer than the actual parsing time 
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itself [23]. Consequently, instead of optimizing specific 
computation of parsing model, we explore acceleration 
from memory side; that is to say, accelerate the XML data 
loading stage. 

6.1 Prefetchers  

In this study, we evaluate how different prefetching tech-
niques behave as the memory-side accelerator to impact 
the performance of XML parsing. In order to make a 
comprehensive investigation, we have selected eight 
hardware prefetchers named n1 through n8, which utilize 
different techniques and algorithms. We summarize these 
prefetchers in Table 4:  

 Cache hierarchy indicates the coverage of the 
prefetcher, which means if the prefetching is applied at L1 
cache, L2 cache, or both;  

 Prefetching degree suggests whether the aggres-
siveness of the prefetcher is statically or dynamically ad-
justed. Usually, the dynamic prefetching degree can 
adapt itself to the phase change of the application so as to 
produce more efficient prefetchings;  

 Trigger L1 and trigger L2 respectively show the 
trigger set for covered cache hierarchy. In this case, de-
mand access stands for access requests from upper 
memory hierarchy regardless whether it is a miss or hit, 
and N/A means no prefetching is applied. Since demand 
access trigger set contains more opportunities to invoke 
the prefetching, it always yields more aggressiveness as 
well as pollutions.  

Besides, all the selected prefetchers can filter out re-
dundant access requests.  

TABLE 4: SUMMARY OF PREFETCHERS  

Prefetchers 
Cache 

Hierarchy 
Prefetch 
Degree 

Trigger 
L1 

Trigger 
L2 

n1 L1 & L2 dynamic Miss Access 

n2 L1 Static Miss N/A 

n3 L1 & L2 dynamic Miss Miss 

n4 L1 Static N/A N/A 

n5 L2 Static N/A Miss 

n6 L1 & L2 dynamic Miss Miss 

n7 L2 Static Miss Access 

n8 L2 Static N/A Access 
 
The aggressiveness of the prefetching is the co-

production of all these four metrics and prefetching algo-
rithms itself. Usually, the more applied cache hierarchy, 
the deeper prefetch degree and the larger trigger set 
would lead to more aggressive prefetching. However, it 
always comes with cache pollution and other side effects. 
In the following, we introduce the eight selected prefetch-
ers briefly.  

The first prefetcher n1 can tolerate out-of-order (OoO) 
memory accesses by making prefetching based on the 
recent memory access pattern [26]. The second prefetcher 
n2 exploits various localities in both local and global 
cache-miss streams, including global strides, local strides 

and scalar patterns [27]. A multi-level prefetching frame-
work is applied in n3, which uses a sequential tagged 
prefetcher at L1 cache and either an adaptive prefetcher 
or a sequential tagged prefetcher at L2 cache [28]. With 
the observation that memory accesses often exhibit repeti-
tive layouts spanning large memory region, n4 is the op-
timized implementation of spatial memory streaming 
(SMS) including a novel mechanism of pattern bit-vector 
rotation to reduce SMS storage requirement [29]. Combin-
ing the storage efficiency of reference prediction tables 
(RPT) and high performance of program counter/delta 
correlation (PC/DC) prefetching, n5 can substantially re-
duce the complexity of PC/DC prefetching by avoiding 
expensive pointer chasing and re-computation of the del-
ta buffer [30]. The sixth prefetcher n6 applies a hybrid 
stride/sequential prefetching schema at both L1 and L2 
cache levels. Metrics such as prefetcher accuracy, lateness 
and memory bandwidth contention are fed back to adapt 
the aggressiveness of prefetching [31]. By understanding 
and exploiting a variety of memory access patterns, n7 
combines global history buffer and multiple local history 
buffers to improve the coverage of prefetching [32]. Final-
ly, n8 is a stream-based prefetcher with several enhance-
ment techniques including constant stride optimization, 
noise removal, early launch of repeat stream and dead 
stream removal [33].   

6.2 Performance Analysis  

Table 5 summarizes the reduction of cache misses as a 
result of applying the prefetchers. Note that different 
prefetchers may target different cache levels; in this table, 
we show the cache miss reduction of the lowest level 
cache that the prefetcher is applied to. The last row shows 
the lowest-level cache where prefetching is applied. For 
example, n1 is applied to both L1 and L2 caches, and we 
show the cache miss reduction of L2 cache; n2 is applied 
to only L1, so we show the cache miss reduction of L1 
cache. The results indicate that prefetching techniques are 
very effective on XML parsing workloads, as most 
prefetchers are able to reduce cache miss by more than 
50%. In the best case, n3 is able to reduce L2 cache miss by 
82% in SAX parser and 85% in DOM parser. 

TABLE 5: REDUCTION IN CACHE MISSES 

 n1 n2 n3 n4 n5 n6 n7 

SAX 69% 43% 82% 82% 51% 40% 73% 

DOM 77% 52% 85% 85% 61% 52% 77% 
Cache 
Level L2 L1 L2 L1 L2 L2 L2 

 
In Figure 8, we show how the cache miss reduction 

translates into performance improvement on SAX pars-
ing: it shows the impact of the eight prefetchers (n1 - n8) 
as well as the average. The x-axis lists the seven bench-
marks we used and the y-axis shows the percentage of 
performance improvement in terms of execution time 
reduction. The results indicate that prefetching tech-
niques are able to improve SAX parsing performance by 
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up to 10%. For instance, the parsing time of personal-
schema has been reduced by 7.24% on average. Looking 
into each prefetching technique, we observe that n3 
shows greatest advantage in improving the performance, 
ranging from 2.58% to 9.72% across different benchmarks. 
This is because n3 is the most aggressive prefetcher and 
covers both L1 and L2 cache levels, thus resulting in the 
best average performance.  

 

Figure 8: Performance Improvement for SAX Parsing 

 

Similarly, Figure 9 summarizes the performance im-
pact of prefetching on DOM parsing.  The results indicate 
that prefetching techniques are able to improve DOM 
parsing performance by up to 20%. For instance, when 
averaging the results, memory-side acceleration produces 
13.74% execution cycle reduction for mystic-library. It is 
obvious that the most effective prefetcher is still n3：even 
in the worst case of resume_w_xsl, n3 can still reduce exe-
cution time by 6%. Note that different from SAX parsing, 
DOM parsing must construct inner data structure in 
memory for all elements. The bigger the document, the 
more space it would consume and the more cache miss it 
would induce. As a result, large-size benchmarks such as 
mystic-library, physics-engine and standard can get a higher 
performance gain from memory-side acceleration, rang-
ing from 7.65% up to 13.75%. These results confirm that 
memory-side acceleration can be effective regardless of 
the parsing models. 

 

Figure 9: Performance Improvement for DOM Parsing  
 

7  IMPLEMENTATION FEASIBILITY  

By now we have shown that memory-side acceleration 
can significantly improve XML parsing performance. 
However, conventional wisdom is that prefetching re-

quires extra hardware resources, competes for limited bus 
bandwidth, and consumes more energy. Thus, many 
would argue that it is not worthwhile to implement 
memory-side accelerators for XML parsing. In this section, 
we address these doubts by validating the feasibility of 
memory-side acceleration in terms of bandwidth utiliza-
tion, hardware cost and energy consumption.  

7.1 Bandwidth Utilization   

Contention for limited bus bandwidth often leads to seri-
ous performance degradation. Prefetching techniques 
result in extra bus traffic and thus require extra bus 
bandwidth. If the regular memory traffic of the applica-
tion itself has used up all the bus bandwidth, then the 
contention brought in by memory-side acceleration might 
hinder rather than improve performance. In order to val-
idate whether this is the case or not, we study the band-
width utilization of XML parsing workloads and the re-
sults are summarized in Table 6. The results show that 
bus bandwidth utilization without prefetching is far away 
from exhaustion. On average, bus utilization for SAX and 
DOM parsing are only 3.72% and 5.51% respectively. This 
indicates the performance of XML parsing is hurt by the 
latency but not the bandwidth of memory subsystem, and 
thus confirming that prefetching would be effective. 

TABLE 6: BANDWIDTH CONSUMPTION WITHOUT PREFETCHING  

Benchmarks SAX DOM 

long 4.09% 5.55% 

mystic-library 4.38% 7.46% 

personal-shema 4.94% 6.31% 

physics-engine 4.07% 6.08% 

resume_w_xsl 0.97% 1.03% 

test-opc 1.01% 5.25% 

Standard 6.58% 6.89% 
 

7.2 Hardware Cost and Energy Consumption   

We extracted the hardware cost information from the de-
sign documents of the eight prefetchers and summarized 
this information in Table 7. On average, these prefetchers 
require about 28,000 bits of memory space. For instance, 
n6 consists of a 14080-bit L1 prefetcher, a 4096-bit L2 
prefetcher and eight 20-bit counters, producing a 32416-
bit hardware cost. All of their hardware cost is less than 
or equal to 32 Kbits, which is not a significant amount of 
hardware overhead in modern high-performance proces-
sor design. 

TABLE 7: HARDWARE COST OF PREFETCHERS  

Prefetchers Hardware Cost (bits) 

n1 32036 

n2 20329 

n3 20787 

n4 30592 

n5 25480 

n6 32416 
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n7 30720 

n8 32768 
 
Next we study how these memory-side accelerators 

impact system energy consumption.  When calculate the 
overall energy consumption, we sum up the energy 
comsumed by the memory system and the energy 
cosumed by the hardware prefetcher. As stated in Equa-
tions 1-3, energy can be classified into two categories: 
static energy and dynamic energy. The first one is the 
product of the overall execution time (t) and the static 
power consumption (Pstatic) of system; whereas the second 
component can be derived by multiplying the number of 
read/write accesses (nm) and the energy dissipated on 
each access (E’m). The static power is a constant across all 
the implementations so that the static energy is just de-
termined by how prefetching can shorten the execution 
time. 

(1) 

prefstaticpref EE

EEE









dynamic

memstaticmemdynamic   
 

(2) tPE staticstatic   

(3) 
' mmdynamic EnE   

Using our simulation framework consisting of 
CMP$IM and CACTI, we can generate energy parameters 
of different storage and interconnect structures imple-
mented in different technologies. Here, we focus on the 
implementation with state-of-the-art 32nm technology 
and the results are summarized in Figures 10 and 11. In 
these figures, we use energy consumption with no 
prefetching as our baseline, thus a positive number indi-
cates that the prefetcher consumes extra energy, and a 
negative number indicates otherwise. Note that in 32nm 
technology, static energy is comparable to dynamic ener-
gy [24]. The prefetchers generate extra memory requests 
and bus transactions, thus adding dynamic energy con-
sumption. On the other hand, prefetchers accelerate XML 
parsing execution, resulting in reduction of static energy 
consumption. If the static energy reduction surpasses the 
dynamic energy addition, then the prefetcher results in 
overall system energy reduction.  

As shown in Figure 10, in SAX parsing most prefetch-
ers lead to more energy consumption: it is due to the in-
crease of dynamic energy dissipation coming from excess 
memory accesses incurred by prefetching. Nevertheless, 
when we look into details, n5 always leads to energy effi-
ciency, resulting in 1% to 4.5% energy saving across the 
benchmarks. Similarly, n1 results in energy saving in 
about half of the cases. This is because n1 and n5 are rela-
tively conservative prefetching techniques: they either 
prefetch at only one cache level or prefetch a small 
amount data each time. 

 

Figure 10: Energy Consumption of SAX Parsing  

 

In Figure 11, we summarize how acceleration impacts 
energy consumption in DOM parsing. Different from the 
results in SAX parsing, most prefetchers become energy-
efficient in many cases due to their ability to further re-
duce execution time in DOM parsing. Note that static 
energy is the product of static power and time, since static 
power is constant, by reducing execution time, we can 
reduce static energy as well. Identical with Figure 9, n5 is 
still the most energy-efficient prefetcher which archives as 
high as 12.77% energy saving in mystic-library. Even when 
running its worst case of resume_w_xsl, n5 can still reduce 
overall energy consumption by almost 3%. 

 

Figure 11: Energy Consumption of DOM Parsing  

 

8 AN EXEMPLARY HARDWARE IMPLEMENTATION  

The results from Section 6 indicate that n3 provides the 
best performance as it being the most aggressive 
prefetcher. In this section we use n3 as a case study to 
discuss the implementation details of using prefetchers to 
improve XML parsing performance.   

Prefetcher n3 is a multi-level prefetching framework 
that consists of six components: in L1 cache, it uses a se-
quential tagged prefetcher; in L2 cache, it implements a 
selective correlating prefetcher based on a Differential 
Finite Context Machine (PDFCM), which predicts the next 
occurrence by considering sequences of differences be-
tween consecutive addresses issued by the same memory 
instruction. To remove redundant memory accesses, in L1 
cache it uses Miss State Holding Register (MSHR) struc-
tures to hold memory accesses to the same address. Simi-
larly, in L2 cache, it uses a Prefetch Memory Address File 
(PMAF) structure, which is a FIFO structure similar to 
eliminate prefetching requests to blocks that have already 
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been issued to the next memory level. In addition, to con-
trol the aggressiveness of the L1 and L2 prefetch engines, 
it applies a degree controller at each cache level.  

First, in order to find out the chip area overhead and 
the power overhead of this design, we implemented the 
n3 design on a Xilinx Spartan-3 FPGA board and used the 
XPower Analyzer to generate power consumption infor-
mation. The results show that the overall power con-
sumption of this design is 32.6 mW. In Figure 12, we 
break down the power consumption by different hard-
ware components: note that the clock is the highest power 
consumer, accounting for 68% of the total power con-
sumption. The next biggest power consumer is the signals, 
consisting of 26% of the power consumption. On the other 
hand, DCM and Logic make up a small proportion of the 
total consumption, with each just accounting for 3% of the 
overall energy consumption.  

 

Figure 12: Power Consumption of the Prefetcher Implementation on 
FPGA  

 

The next question we raised was how this power con-
sumption data compared to that of a simple processor, 
and what the hardware overhead of this design is. In Ta-
ble 8, we summarize the hardware cost and power con-
sumption of n3 prefetcher: the hardware utilization 
measures include the number of flip-flops (#FF), and the 
number of look-up tables (#LUT). For comparison pur-
pose, we also present the resource utilization of the 
eMIPS processor, a simple MIPS in-order processor im-
plementation [43]. The results show that eMIPS requires 
17055 flip-flops, and 26106 look-up tables. Compared to 
the eMIPS processor, the hardware resource consumption 
of n3 prefetcher consists of 582 flip-flops and 1005 look-
up tables, which represents less than 5% hardware over-
head. In terms of power consumption overheads, eMIPS 
consumes 356 mW whereas prefetcher n3 consumes 32 
mW, which represents 9% power consumption overhead. 
Note that at the first sight, 9% power consumption over-
head may seem high, but eMIPS is a very simple in-order 
processor that runs at very low frequency (100 MHz). 
Comparing to commercial processors, such as Intel 
Xeon®, which consumes about 100 W of power, the pow-
er overhead of this prefetcher design is really negligible. 

TABLE 8: HARDWARE COST AND POWER CONSUMPTION COM-

PARISON BETWEEN EMIPS AND PREFETCHER  

 # FF #LUTs Power (mW) 

eMIPS 17055 26106 356.36 

Prefetcher n3 582 1005 32.6 
 

As mention above, prefetcher n3 consists of prefetch 
engines at both L1 and L2 cache levels, and our imple-
mentation data indicates that the area overhead of the L1 
prefetch engine is about one third of that of the L2 
prefetch engine. In this part we try to understand whether 
it is worthwhile to implement prefetch engines at both L1 
and L2 levels, or whether it is sufficient to implement a 
prefetch engine at only the last-level cache (L2 in this 
case). 

In Figure 13, we compare the performance of the two-
level (both L1 and L2) prefetcher versus that of the L2-
only prefetcher. The y-axis shows the performance im-
provement achieved by the two-level prefetcher com-
pared to the L2-only prefetcher. Across all benchmarks 
with both DOM and SAX parsers, two-layer prefetching 
outperforms the L2-only prefetcher, but providing only 
1~2% performance gain. This is because the latency of L1 
cache miss is several orders of magnitude smaller than 
that of memory access. When applying the two-level 
prefetcher, some L1 cache misses can be reduced, howev-
er, the impact on overall performance is small. In other 
words, we spend 1/3 more area budget to achieve only 
1~2% of performance gain, which implies that it may not 
be a cost-effective option to implement the two-level 
prefetcher. 

 

Figure 13: Performance Comparison of L2-only vs. Two-Level 
Prefetchers 

 

In next step, we compare the energy consumptions as a 
result of applying the two-level prefetcher versus apply-
ing the L2-only prefetcher, and the data is presented in 
Figure 14.  The y-axis shows the system energy overhead 
as a result of applying the L2-only prefetcher compared to 
that of applying a two-level prefetcher: a positive number 
represents that applying a L2-only prefetcher would con-
sume more energy; whereas a negative number indicates 
otherwise. 
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Figure 14: Energy Consumption Comparison of L2-Only vs. Two-
Level Prefetchers  

 

It is generally recognized that multi-layer mechanism 
might incur more energy consumption due to their in-
creased hardware overheads. However, as shown in Fig-
ure 14: for most cases the two-layer prefetcher leads to 
energy efficiency, on average producing a 2.46% energy 
reduction in SAX parsing and 4.27% reduction in DOM 
parsing. For benchmark long, applying the two-level 
prefetcher introduces an energy saving of over 10%; and 
for personal-schema and test-opc, its improvement also 
achieves over 6%. Although a two-level prefetcher incurs 
1/3 of area and power overhead compared to a L2-only 
prefetcher, since the power consumption of the prefetcher 
is negligible comparing to the power consumption of the 
system, and thus the power overhead of the two-level 
prefetcher over the L2-only prefetcher also becomes neg-
ligible. On the other hand, the two-level prefetcher pro-
vides 1~2% performance improvement, leading to reduc-
tion of system-level energy consumption, thus the two-
level prefetcher design actually leads to system-level en-
ergy efficiency.  

 Also, it is worth noting that for some benchmarks, ap-
plying a two-layer prefetcher may lead up to 4% extra 
energy consumption. That is because multi-layer 
prefetching may also introduce cache pollution problems 
that incur excessive memory accesses, offsetting the static 
energy reduction from reduced execution time. To sum 
up, if energy efficiency was the optimization goal, we 
should use simple but aggressive prefetching engines, 
such as n5. Otherwise, if performance was the optimiza-
tion goal, we should use complex but aggressive prefetch-
ing engines such as n3. Specifically, in n3, it is worthwhile 
to implement a multi-layered scheme as it provides mar-
ginal performance improvement and better energy effi-
ciency. 

9  CONCLUSIONS  

Different from previous research work which focused on 
computation acceleration of XML parsing, we first identi-
fied memory access as one of the performance bottle-
necks. We then proposed to make acceleration for XML 
parsing from memory side by improving its data loading 
performance. The results show that memory-side acceler-
ators exhibit considerable effectiveness across existing 
parsing models. They are able to reduce cache misses by 
up to 80%, which translates into up to 20% of perfor-
mance improvement. 

  We also verified the feasibility of our proposal by 
checking its implementation impact on bandwidth, ener-
gy consumption and hardware cost. The results show that 
memory-side accelerator can produce up to 12.77% of 
energy saving when implemented in 32nm technology. 
For the eight accelerators studied, all their hardware cost 
is within 32 Kbits which is a very small and reasonable 
overhead considering modern hardware budget. Regard-
ing bandwidth, XML parsing performance is hurt by the 
latency but not by the throughput of the memory subsys-
tem, thus confirming that memory-side acceleration will 
not likely result in resource contention of memory bus 
bandwidth. In conclusion, memory-side acceleration of 
XML parsing is not only effective but also feasible.  

10  FUTURE WORK 

The next step of this research project is to integrate 
memory-side and computations-side accelerators of XML 
parsing into a single core, and optimize its performance 
and power consumption.  Then, ultimately, we are going 
to integrate this core onto many-core architectures to act 
as a Data Exchange Frontend (DEF).    

Our ultimate goal is to build a heterogeneous many-
core chip, which consists of two kinds of cores: general-
purpose cores and specialized cores. The general-purpose 
ones take care of conventional general computing work-
load as well as control. The specialized ones are designed 
for some critical and commonly used functions, for ex-
ample, XML parsing, garbage collection (GC), and 
memory encryption/decryption. With the specialized core 
design, we can achieve both performance and energy im-
provement.  
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