
For Peer Review
 O

nly

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Acceleration of XML Parsing Through
Prefetching

Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and Jean-Luc Gaudiot, Fellow, IEEE

Abstract—Extensible Markup Language (XML) has become a widely adopted standard for data representation and exchange.

However, its features also introduce significant overhead threatening the performance of modern applications. In this paper, we

present a study on XML parsing and identify that memory-side data loading in parsing stage incurs a significant performance

overhead, at the same level as computation. Hence, we propose memory-side acceleration with the incorporation of data

prefetching techniques, which can be applied on top of computation-side acceleration to speed up the XML data parsing. To this

end, we study the impact of our proposed scheme on the performance and energy consumption and find out that it is able to

improve performance by up to 20% as well as produce up to 12.77% of energy saving when implemented in 32nm technology.

In addition, we implement a prefetcher on FPGA platform in an effort to evaluate its implementation feasibility in terms of area

and energy overhead.

Index Terms— XML Parsing, Prefetching, Hardware Acceleration.

——————————  ——————————

1 INTRODUCTION

xtensible Markup Language (XML) is emphasized for
its language neutrality, application independency and
flexibility, and thus has been adopted as the standard

in data exchange and representation. For example, the
International HapMap project uses XML schemas to rep-
resent the common patterns in human DNA sequence [6].
Although XML is prevalent with many benefits, due to its
verbosity and descriptive nature, XML parsing has intro-
duced heavy performance overhead [1, 2]. Generally,
XML parsing is both memory and computation intensive.
It consumes about 30% of processing time in web service
applications [4], and has become a major performance
bottleneck in database servers [5]. A real-world example
would be Morgan Stanley’s Financial Services system,
which spends 40% of its execution time on processing
XML documents [3]. This is only going to get even worse
as XML dataset get larger and more complicated.

To improve the performance of XML processing, most
existing proposals are dedicated to make acceleration
from computation side. However, in this paper, we
demonstrate that memory access acceleration is equally (if
not more) important compared to computation accelera-
tion. Therefore, different from previous computation ac-
celeration studies, we propose to accelerate XML parsing
from the memory-side with the incorporation of data
prefetching techniques. Unlike computation-side accelera-
tion, which has a strong dependency on the parsing mod-

el, memory-side acceleration is generic and can be ap-
plied irrelevant of the parsing model underneath. In addi-
tion, its combination with computation-side acceleration
will largely relieve the performance pressure incurred by
XML parsing.

Note that our long-term goal is to develop a dedicated
XML parsing core, which consists of a computation accel-
erator and dedicated prefetching logics. With the compu-
tation accelerator, we can develop specialized instructions
to accelerate the computation of XML parsing; with the
dedicated prefetching logics, we would avoid data pollu-
tion from other workloads, and keep feeding data to the
computation accelerator. This core should eventually be
one of multiple specialized cores in a heterogeneous
many-core chip, and acts as the Data Exchange Frontend
(DEF), efficiently (in terms of power and performance)
parsing the incoming XML data, and then passing the
output to other cores for further processing.

To this end, we address the following questions in this
paper: first, is memory access overhead indeed the same
performance bottleneck for XML data parsing as that
from computation? Second, how much can memory-side
prefetching techniques improve the performance of XML
parsing? Third, is it feasible to implement these tech-
niques in hardware considering its energy and hardware
cost?

The rest of this paper is organized as follows: before
answer those three questions, in Section 2, we first review
related research work on XML parsing techniques and
prefetching techniques. In Section 3, we describe the
methodology of our study. Then in Section 4, we present a
performance study of XML parsing under both native and
managed environments. To answer the first question, in
Section 5, we evaluate the performance of XML parsing
and identify the performance bottleneck. To answer the
second question, in Section 6, we delve into our proposal:

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Jie Tang is with the School of Computer, Beijing Institute of Technology. E-
mail: tangjie.bit@gmail.com

 Shaoshan Liu is with Microsoft. E-mail: shaoliu@microsoft.com
 Chen Liu is with the Department of ECE. Florida International University,

E-mail: cliu@fiu.edu
 Zhimin Gu is with the School of computer, Beijing Institute of Technology.

E-mail: zmgu@x263.net
 Jean-Luc Gaudiot is with the Department of EECS, University of Califor-

nia, Irvine. E-mail: gaudiot@ uci.edu

.

E

Page 1 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

memory-side acceleration of XML parsing. We propose to
use hardware prefetching to break the performance bot-
tleneck on the memory side and messure what the im-
provement is. To answer the third question, in Section 7,
we study the implementation feasibility of the memory-
side acceleration. As a further verification, in Section 8,
we make a case study by implementing one prefetching
engine on FPGA platform and exploiting its hardware
overhead as well as energy consumption. Finally, we con-
clude and discuss our future work in Section 9 and Sec-
tion 10 respectively.

2 BACKGROUNDS

In this section, we review XML parsing techniques,
prefetching techniques as well as related studies on soft-
ware and hardware acceleration for XML parsing.

2.1 The XML Parsing Process

XML parsing is a process that scans through the input
XML documents, breaks them into small elements, and
builds corresponding inner data representation. It is a
pre-requisite for any processing of an XML document
because an XML document has to be parsed before any
other operations can be performed. However, XML pars-
ing is also very expensive due to the high overhead in-
curred by both computation and memory access.

Figure1: XML Parsing Process

Usually, XML data parsing consists of three steps: char-
acter conversion, lexical analysis and syntactic analysis, as
shown in Figure 1. The first parsing step, character conver-
sion, converts a bit sequence from source XML document
into the character sets that are host programming lan-
guage dependent. The second parsing step, lexical analysis,
partitions the character sets into subsequences called to-
kens, like start element, text, and end element. Each token is
defined by a regular expression in the World Wide Web
Consortium (W3C) XML specifications [8]. The third pars-
ing step, syntactic analysis, verifies the structure of tokens
by checking that they have been properly nested. It is
usually implemented by pushdown automaton (PDA). After
syntactic analysis, the PDA organizes tokens into different
data representations available for subsequent accesses or
modifications via various application programming inter-
faces (APIs) provided by different parsing models. The
first two steps stay the same among different parsing
models. However, the third step, syntactic analysis, exhibit
variable behaviors when different parsing model is ap-
plied [6].

2.2 XML Parsing Modeling

Based on how inner data structure is represented, there

exist two categories of XML parsing models: event-driven
parser and tree-based parser.

On one hand, event-driven parser simply parses the
document and associates any tag it finds along the way
with corresponding event, including the start and end of
the document, finding a text node, finding child elements,
and hitting a malformed element. It transmits and parses
XML infosets sequentially at runtime. The parser itself
does not store any information of the XML document, so
that the application can just access partial data before
parsing is completed. As a result, event-driven parser has
an enviably small memory footprint and low latency,
making it suitable for streaming or forward-only applica-
tions. Event-driven model can be further divided into two
classes: pull parser and push parser, according to the par-
ser-application interaction. Simple API for XML (SAX) [7]
adopts the push model, which uses callback functions to
report all the events from the parser to the application. In
contrast, StAX [34] adopts the pull model, in which clients
pull XML data when it is needed so that it can skip unin-
terested events. As shown in upper part of Figure 2, SAX
parses the XML document and then pushes the XML in-
formation into application in terms of SAX events.

On the other hand, tree-based parser reads the entire
content of an XML document into memory and creates an
in-memory tree structure to represents parent-child-
sibling information. Only after parsing is complete, con-
structed trees can be navigated freely and parsed arbitrar-
ily for the duration of the document processing, which
makes this parser suitable for massive and frequent up-
dates. This flexibility, however, comes at a great cost of
potentially large memory requirement and significant
access delay, especially when large document is processed.
Document Object Model (DOM) [8] is the official W3C
standard for tree-based parser. As shown in bottom part
of Figure 2, DOM parser processes XML data, creates an
object-oriented hierarchical representation of the docu-
ment and offers the full access to the XML data. In this
study, we focus on the two most popular parsing models,
namely, SAX and DOM.

Figure 2: SAX and DOM Parsing Flow

2.3 Prefetching Techniques

Data prefetching has been proposed as a speculative
technique to bridge the speed gap between CPU and
memory subsystem. It alleviates the performance degra-

Page 2 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 3

dation from the long-latency memory accesses by predict-
ing the memory access pattern of the application and
speculatively prefetching data that would be used in fu-
ture computation. Considering that the CPU-memory
performance gap is on the order of hundreds of processor
clock cycles, prefetching is an attractive way to remove
the affect of long latency memory accesses.

2.3.1 Classic Prefetching Algorithm

Prefetching tehniques has been well studied and lots of

algorithms have been proposed. We list some classic

prefetching algorithm s below.

Sequential prefetching prefetchs the block or blocks that
follow the current demanded block, and is fit for the pro-
grams with the consecutive memory access pattern [36,
37]. As an improvement, Sequential tagged prefetching [51]
issues a prefetch upon a cache miss as well as when a
prefetched block is referenced for the first time, thus it
requires an extra bit per block to mark the prefetch state.
The Sequential prefetching family increases the perfor-
mance on a broad range of applications at a low cost,
however, at the expsense of many useless prefetches.

Stride prefetching makes prefetch requestes according to
the observed strides that separate memory addresses flow.
Conventional stride prefetching uses a record table indexed
by the program counter (PC) that associates strides to the
loads following this kind of memory access pattern [38,
48]. If address a is referenced by a load that hits in the
table, the matching entry indicates that the load is follow-
ing a stride pattern, then prefetcher issues the request for
addresses a+s, where s is the associated stride.

Strem Prefetching traces a sequence of nearby misses
when their addresses follow the same positive or negative
direction in a small memory region [39, 40]. In some de-
sign [39], there always exsites a streaming buffer to store
the fetched data.

Correlating prefetching predicts fu ture addresses from

tables that record the past memory program behavior [49,

50]. Usually, it generalizes the stride table by registering

the stream of addresses associated either to the load PC or

to an address that misses in the corresponding cache level.

In correlating prefetchers，mega-sized tables are needed

to record enough information. Thus, it can provide good

prefetch results to a broader range of applications. How -

ever, it is associated with considerable hardware cost.

2.3.2 Software Prefetching Vs. Hardware Prefetching

According to how prefetching is implemented , it can be

classified into two classes: software prefetching and

hardware prefetching.

 Software Prefetching

Software prefetching [35, 44, 46] need to introduce new

prefetching instructions into the instruction set architec-

ture (ISA), which could bring data at speicified memory

addresses into cache. It is assisted by compiler algorithms

to insert software prefetching instructions into proper

places of the source code. In the preprocessing stage,

compiler gets the global information about memory data

access pattern, locates those data-sets that are lean to-

wards cache misses and calculates the positions to insert

the prefetching instruction. In Intel® Pentium® 4 proces-

sor, it enables using the four prefetch instructions intro-

duced with Streaming SIMD Extensions (SSE). These in-

structions are hints to bring a cache line of data in to vari-

ous cache levels.

Since software prefetching gets the assistance from

compiler or programmer, it can acquire a globle map of

data accesses, handle irregular access patterns and make
more precise prefetchings. However, the insertion of the
prefetching instruction is statically determined so soft-
ware prefetching can not adapt to the phase change of the
application. Since new instructions need to be added,
recompilation is required, so these do not benefit the sce-
narios where recompilation is inconvenient.

 Hardware Prefetching

Different from software prefetching that statically in-
serts prefetching instructions by compiler, hardware
prefetching frees the need to expand instruction set archi-
tecture and frees the compiler from revising the source
code of applications. It automatically determines the data
accesses that might cause cache misses and then make
pretching requestes. Its decision is based on the recorded
history information so that it can adapt to the phase
change of application. However, it must comsume extra
hardware resource and is unable to gain a complete pic-
ture of the whole memory pattern. Therefore, it does not
suit for the case of irregular data access and short arrays
for the penalty of history start-up. In our study, we focus
on hardware prefetching for its advantage of no revise of
the source code.

2.4 Overview of Hardware Prefetcher

In this subsention, we present the system integration
and detailed architecture of hardware prefetcher.

2.4.1 System Integration of Hardware Prefetcher

As a speculative techinique, hardware prefetching can
locate in any cache layer. Since modern processor has

taken multi-layer cache hierarchy to hid e the long la-

tency memory access, multi-level prefetcher may give

more performance improvement, considering its effect

in each level applied . For example, as shown in Figure 3,
we can have a L1 cahce prefetcher which requests data in
L2 cache into L1 cache, a last-level cache (LLC) prefetcher
which prefetches the requested data in memory into last-
level cache, and a memory prefetcher which communi-
cates between memory and disk, reducing the time used
for disk accesses. However, most modern processors per-
form out-of-order (OoO) execution, so that the latency of
L1 cahce miss can be tolerated by the architecture im-
provement. Therefore, it is arguable to apply prefeting in
L1 cache level. For the last level cache, its cache miss la-
tency is determined by the time used for memory access,
which is on the order of hundred of processor cycles
nowadays. Here, the applying of prefetching can hide
several long latency memory accesses, resulting consider-
able performance improvement, especially for memory-
intensive applications. It also can be seen in Figure 3 that
the prefetched data are usually sent into the low level

Page 3 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

cache directly. However, to reduce the chance of cache
pollution, some researchers proposed to cache the
prefetched data into an extra buffer [44, 45]. As a result,
the competition for limited cache lines is alleviated at the
cost of additional hardware overhead.

Figure 3: System Integration of Prefetcher

2.4.2 Architecture of Hardware Prefetcher

Hardware prefetcher utilizes hardware resources in
order to load useful data ahead of time. As shown in left
part of Figure 4, the flow of cache miss or cache access is
passed into hardware prefetcher, which can be considered
as the trigger set of the prefetching. Then prefetcher re-
quests data through predicting future accesses and issu-
ing prefetch requests into lower memory hierarchy. When
request is fulfilled, those returned data are forwarded into
upper hierarchy where cache flow is collected or addi-
tional prefetching buffer.

As in the right part of Figure 4, we can obtain the ge-
neric architecture of hardware prefetcher. The trigger set,
regardless it is collected as cache access or cache miss, is
passed into history recorder and corresponding infor-
mation is captured based on the algorithm applied. Usu-
ally, the flow can be recorded by a particular program
counter value, being the memory activities of the same
instruction; or by a constant time slot, being the time-
sliced memory behavior.

Figure 4: Architecture of Generic Prefetcher

Prefetching engine (PE) fetches the recorded information

from the history recorder and makes prediction by consid -

ering memory behavior relations. There have been a lot of

relations considered by d ifferent prediction algorithms,

e.g., Sequential Prefetching, Stride Prefetching, Stream
Prefetching and Correlation Prefetching as we mentioned
earlier.

There are also some optional modules inside prefetch-
ing engine to control the precision and aggressiveness of
the prefetcher. The aggressiveness module can be used to
tune the number of triggered requests through optimiz-
ing the prefetching degree or prefetching distance. The
confidence module can be used to diminish the oppor-
tunity of unsuccessful prefetching. It checks the confi-
dence recording and excludes those requests whose con-
fidence is below certain threshold. The combination of
these optimization modules can produce benefits as well
as side effects such redundant prefetchings. Since the
coverage of prefetching can overlap with that of demand
access and the adjacent prefetching may request data
within the same block, there come several redundancies
that might lead to fruitless accesses and bandwidth waste.
Corresponding to that, the request filter component is in-
troduced. When system bandwidth support is limited,
most of those redundant accesses can be captured and
filtered by the request filter, yielding less ineffectiveness.

2.5 Related Work on XML Acceleration

There have been several proposals on mitigating the per-
formance overhead of XML processing.

In software community, several research groups em-
ployed the concept of binary XML to avoid performance
bottleneck of XML parsing [1, 9, 10]. For example, VTD-
XML parser [10] parses XML documents and creates 64-
bit binary-format VTD records. However, its parsed bina-
ry data cannot be used by other XML applications direct-
ly. On the other hand, some researchers focus on parallel-
izing the parsing process with the presence of parallelism
within modern processor or parsing itself. Prescanning-
based parallel parsing model [11] builds a skeleton of the
XML document to guide partitioning of the document for
parallel data processing. Also, in [12] Head et al. exploited
the parallelism by dividing XML parsing process into
several phases, so that they can schedule working threads
to execute each parsing phase in a pipelined model. In
addition, Parabix exploits the SIMD capabilities of com-
modity processors to process multiple characters simul-
taneously [13].

In the hardware community, based on the profiling
analysis, Zhao et al. incorporated new instructions with
special hardware support to spedup certain frequently-
used operations of XML parsing [14]. In [15], Moscola et
al. presented a technique to automatically map regular
expressions directly onto FPGA hardware and imple-
mented a simple XML parser for demonstration. Howev-
er, since XML syntax rule is not a regular language. XOE
[16] accelerates XML document parsing via offloading
some fundamental parsing functionalities like tokening
onto a special XOE engine. XPA [17] is another XML pars-
ing accelerator implemented on FPGA, capable of per-
forming XML well-formed checking, schema validation,
and tree construction. It can reach up to 1 cycle-per-byte
throughput for XML parsing. Nevertheless, their design
works only for tree-based parsers. As we will show in the
following sections, memory access is one of the major
bottlenecks of XML parsing, thus we will be able to gen-
erate extra performance gain by memory-side accelera-

Page 4 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 5

tion on top of all those computation-side acceleration
proposed previously. In addition, unlike computation-
side acceleration that can be only applied to specific pars-
ing model, memory-side acceleration is generic and can
be prevalently adopted to enhance the effectiveness of
XML parsing, regardless of the parsing model under-
neath.

3 METHEDOLOGY

In this section, we discuss our methodology to study the
performance of XML parsing, covering the benchmarks
we selected and the tools we employed.

3.1 XML Parsers and Benchmarks

In order to make fair comparison, we choose XML parser
implementations of both event-driven and tree-based
models from Apache Xerces [18]. Apache Xerces provides
SAX and DOM XML parsers, and has implementations of
these two models in both native (C++) and managed (Ja-
va) environments. This allows us to perform a thorough
study to understand the performance of SAX and DOM
models in different execution environments.

As for inputs to the XML parsers, we have selected
seven real world XML documents of varying sizes (rang-
ing from 1.4 KB to 113 MB) and complexities as input data,
which are listed in Table 1. Specifically, personal-schema is
a very simple document with flat structure, thus the pars-
ing process is straightforward; on the contrary, standard is
a long document with deep structures, which complicates
the parsing process.

TABLE 1: BENCHMARKS

3.2 Performance and Memory Modeling

To study the performance of the memory-side accelera-
tion, we utilize CMP$IM [19], a binary-instrumentation-
based cache simulator developed by Intel. CMP$IM is
able to characterize cache performance of single-threaded,
multi-threaded, and multi-programmed workloads. The
simulation framework models an out-of-order processor
with the basic parameters outlined in Table 2.

 To understand the implementation feasibility of the
memory-side accelerators, we need to model the energy
consumption of these designs. For this purpose, we em-
ploy CACTI [20], an energy model which integrates cache

and memory access time, area, leakage, and dynamic
power. Using CACTI, we are able to generate energy pa-
rameters of different storage and interconnect structures
implemented in different technologies. Note that the
overall system power consumption consists of two com-
ponents: static power and dynamic power. Static power is
generated by the leakage current of the transistors, and it
persists regardless of the swithing state of the transistors.
On the other hand, dynamic power is incurred only when
the transistors are actively switching. In this paper, we
use CACTI to model both static and dynamic power to
evaluate the implementation feasibility of memory-side
accelerators.

TABLE 2: SIMULATION PARAMETERS

Frequency 1 GHz

Issue Width 4

Instruction Window 128 entries

L1 Data Cache 32KB, 8-way, 1cycle

L1 Inst. Cache 32 KB, 8-way, 1cycle

L2 Unified Cache 512 KB, 16-way, 20
cycles

Main Memory 256 MB, 200 cycles

Frequency 1 GHz

3.3 XML Parsing Bottleneck Evaluation

Since XML data have been floated in cloud environment,
with carefully designed study of the cloud data through-
put, we can find whether the network data exchange
stage determines the performance of XML parsing. To

study the network performance, we measured the data

exchange throughput of two different cloud data services:

Content Distribution Network (CDN) and Cloud Storage,

which are two popular categories of modern cloud data
services.

To study the behavior in disk data loading stage, we
make use of the Xperf Performance Analyzer tools [25].
Xperf belongs to Windows Performance Analysis Toolkit.
It can be used to monitor system performance on Win-

dows OS, as it is specifically designed to give a complete

system-wide view of performance over long period of

time. With the help of Xperf, we can capture disk I/O
throughput and determine if it is the bottleneck in pars-
ing execution.

3.4 FPGA based Case Study

To further study the feasibility of memory-side accelera-

tion, we make a case study by implementing one accelera-

tor design on a Xilinx Spartan-3 FPGA board [41]. In d e-

tail, we implemented the design in Verilog, synthesized

the design, and then used the XPower Analyzer [42] to

generate power consum ption information. Since the de-

sign we choose to implement is the most complicated

hardware prefetcher, with the FPGA implementation, we

can get the upper limit of energy consumption, chip area

overhead and hardware cost for memory-side accelera-

tion.

Name Size
(KB)

Description

Long 65.7 sample XML SOAP file

mystic-library 1384
Information of library

books
personal-

shema 1.4
personal information data

physics-
engine 1171

configuration data for
physics simulation

resume_w_xsl 51.8 personal resume

test-opc 1.8
xml test file for web ser-

vices gateway
Standard 113749 bank transaction records

Page 5 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

4 NATIVE VS. MANAGED EXECUTION

In this section, we compare the performance of XML pars-
ing under managed and native environments. We execut-
ed XML parsers on a dual-core machine running at 2.2
GHz and used the Intel Vtune analysis tool [21] to capture
the overall execution time. The results are shown in Fig-
ure 5, in which we take the performance of native execu-
tion as the baseline. The x-axis shows the seven bench-
marks and the y-axis shows the percentage of the excess
execution time incurred by the managed layer (in this
case JVM). It is obvious that when parsing with SAX
model, managed execution produces high performance
overhead. For instance, when parsing test-opc and mystic-
library, the managed middle layer contributes 41.67% and
38% performance overhead respectively. Even in the best
case, long, the middle layer still incurs 20.73% perfor-
mance overhead. The situation is not so good either when
using DOM parsing model. Even the best case physics-
engine has incurred 25.93% performance overhead. In the
worst case, resume_w_xsl, it incurs up to 52.08% perfor-
mance overhead.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

lo
ng

m
ys
tic
-li
br
ar
y

pe
rs
on
al-
sh
em
a

ph
ys
ics
-e
ng
ine

re
su
m
e_
w
_x
sl

te
st-
op

sta
nd
ar
d

SAX

DOM

Figure 5: Managed Execution vs. Native Execution

Although managed environment is able to reduce de-
velopment time, in a common application scenario, XML
parsers reside at the forefront of the XML data processing
and many other components in the system may have de-
pendency on the outputs of the XML parsers. Therefore,
the performance overhead incurred by the managed layer
would severely hinder the performance of the entire sys-
tem. In addition, in large-scale systems (such as those in
cloud computing environments), this large performance
overhead also leads to energy consumption overhead.
This result indicates that managed execution of XML
parsing is not suitable in large-scale computing environ-
ment (e.g. cloud computing environment), considering the
significant overhead it introduced. Henceforth, for execu-
tion and energy efficiency, we focus on native execution
of XML parsing in the rest of the paper.

5 PERFORMANCE ANALYSIS OF XML PARSING

In this section we aim at determining the performance
bottleneck of XML parsing by studying the throughput of
XML parsing at different stages of the information

passing flow, including network data exchange, disk I/O,
and memory accesses. Figure 6 shows the data flow of
XML parsing: first, data is loaded from either network or
local hard disk. Then, data flows into the memory
subsystem: main memory, L2 and L1 caches. At the end,
the processor fetches data from cache and performs the
actual computation.

Figure 6: Data Flow of XML Parsing

5.1 Network Data Exchange

To study the network performance, we measured the data
exchange throughput of different cloud data services. In
Table 3，we summarize our measurements of two popu-
lar categories of cloud data services: Content Distribution
Network (CDN) and Cloud Storage. For each category, we
measured the data exchange throughputs from four dif-
ferent service providers. Note that CDN services contain
several copies of data in the network to maximize band-
width, whereas Cloud Storage services provide online
storage where people can require their storage capacity
for their data hosting needs. On average, the data ex-
change throughput of CDN services is around 29.26 Mb/s.
When employing the CDN service provided by Amazon
CloudFront, the rate can reach 48.85 Mb/s. On the other
hand, the average data exchange throughput of Cloud
Storage services is 12.56 Mb/s and its best case, provided
by Amazon S3 – US East, can reach 21.8 Mb/s. In our ex-
periment, our machine contains a 100 MB/s Network In-
terface Card and the network it connects to has a band-
width limit of 100Mb/s, which is far greater than the
throughput provided by cloud data services. This indi-
cates the network I/O interface is not fully utilized, and
thus the network interface is not likely to be the bottle-
neck of XML parsing operations.

TABLE 3: CLOUD SERVICE DATA RATE

CDN Service Cloud Storage Service

Provider
Rate

(Mb/s) Provider
Rate

(Mb/s)

Akamai CDN 27.50
Amazon S3 -

US East 21.80
Amazon

CloudFront 48.85
Amazon S3 -

US West 10.31

Cotendo CDN 27.72
Azure-South
Central US 6.97

Highwinds
CDN 12.97 Nirvanix SDN 11.17

Average 29.26 Average 12.56

Page 6 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://en.wikipedia.org/wiki/Online_storage
http://en.wikipedia.org/wiki/Online_storage

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 7

5.2 Disk Data Loading

We used the XPerf Performance Analyzer tools [25] in
order to capture disk I/O throughput when running the
XML parsers using the standard benchmark. To get the
precise I/O throughput data, we start from a clean envi-
ronment and make sure the XML data was not already in
the cache. The collected results are shown in Figure 7: the
x-axis shows the execution timeline in seconds and the y-
axis shows the amount of triggered disk I/O operations
during the execution. The gray curve overlaid on top of

the bar diagram indicates the CPU usage information.
The peak of the curve means the CPU is fully utilized.
Figure 6 shows that most of the time disk I/O is in un-
derutilized state, which means the I/O subsystem rarely
needs to reach its full capacity. Based on this observation,
it can be concluded that disk I/O is also not likely to be
the bottleneck of XML data processing. We also ran the
XML parsers with other benchmarks from Table 1, and
the results were similar.

Figure 7: Disk I/O Counts and CPU Usage

5.3 Data Loading from Memory Side

Finally, we studied the overhead produced by memory
data loading stage. Here, memory data loading refers to
the data flow starting from main memory, going through
each cache layer and finally fetched into CPU. In order to
make a comparison, we measured the CPI (cycles per in-
struction) of Speed-test, which is a computation-intensive
CPU stress test application with negligible memory ac-
cesses; and we measured the CPI of native XML parser
using the standard benchmark, which is the large XML
document with a lot of memory accesses. The CPI of
Speed-test is 0.80. Using the SAX parser, the CPI of stand-
ard is 1.27, which introduces 58.75% overhead compared
to Speed-test; using the DOM parser, the CPI of standard
becomes 1.42, which introduces 77.5% overhead com-
pared to Speed-test. In addition, when using other bench-
marks shown in Table 1, we obtained similar performance
data as that of standard.

 As a further validation, we measured the miss count
per kilo instructions (MPKI) of both L1 and L2 cache lay-
ers, which are nearly 10 and 2 respectively for standard.
This means for every 1000 instructions there come about
ten L1 and two L2 cache misses. On the other hand, the
Speed-test has a L1 MPKI of 0.051, and a L2 MPKI of 0.072.
The large number of cache misses mainly contributes to
the CPI increase of XML parsing. Compared with the CPI
of Speed-test, the extra cycles consumed by XML parsing
may indicate that memory data loading stage incurs a
significant amount of overhead to the execution.

5.4 Summary

In summary, the results from the previous three subsec-
tions show the following:

 First, network I/O throughput can easily reach
over 15 MB/s, and this is far below the 100 MB/s network
bandwidth limit, showing that network I/O is far from

being stressed and network data exchange is not likely to
be the bottleneck of XML parsing.

 Second, our experiment results show that the
disk I/O subsystem is underutilized most of the time,
which means disk data loading of XML data parsing is
within the coverage of disk I/O subsystem and cannot be
the bottleneck of execution as well.

 At last, comparing CPI data of XML parsing
workloads with a CPU stress test workload, we have
found that in some cases the CPI of XML parsing almost
doubles that of the CPU stress test. Upon further analysis,
we have found that the high cache miss rate on both L1
and L2 caches is the main contributor to this CPI increase.

Recall in Figure 6 that gives the data flow of XML pars-
ing, we can draw the results that: the performance bottle-
neck of XML parsing is the memory data loading stage,
rather than the disk data loading stage or the network
exchange stage. In other words, the overhead introduced
from memory subsystem really hits the weakness of the
XML data parsing. Therefore, in order to speed up the
XML parsing execution, it is imperative to turn around
the focus of acceleration and reduce the overhead in-
curred by the memory subsystem.

6 MEMORY-SIDE ACCELERATION

We have identified that memory accesses impose signifi-
cant overhead in XML parsing workloads. Similarly, a
study released by Intel verifies that memory accesses con-
tribute to more than 60% execution cycles of the whole
parsing process [22]. Furthermore, another empirical
study done by Longshaw et al. has shown that loading an
XML document into memory and reading it prior to pars-
ing may take even longer than the actual parsing time

Page 7 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

itself [23]. Consequently, instead of optimizing specific
computation of parsing model, we explore acceleration
from memory side; that is to say, accelerate the XML data
loading stage.

6.1 Prefetchers

In this study, we evaluate how different prefetching tech-
niques behave as the memory-side accelerator to impact
the performance of XML parsing. In order to make a
comprehensive investigation, we have selected eight
hardware prefetchers named n1 through n8, which utilize
different techniques and algorithms. We summarize these
prefetchers in Table 4:

 Cache hierarchy indicates the coverage of the
prefetcher, which means if the prefetching is applied at L1
cache, L2 cache, or both;

 Prefetching degree suggests whether the aggres-
siveness of the prefetcher is statically or dynamically ad-
justed. Usually, the dynamic prefetching degree can
adapt itself to the phase change of the application so as to
produce more efficient prefetchings;

 Trigger L1 and trigger L2 respectively show the
trigger set for covered cache hierarchy. In this case, de-
mand access stands for access requests from upper
memory hierarchy regardless whether it is a miss or hit,
and N/A means no prefetching is applied. Since demand
access trigger set contains more opportunities to invoke
the prefetching, it always yields more aggressiveness as
well as pollutions.

Besides, all the selected prefetchers can filter out re-
dundant access requests.

TABLE 4: SUMMARY OF PREFETCHERS

Prefetchers
Cache

Hierarchy
Prefetch
Degree

Trigger
L1

Trigger
L2

n1 L1 & L2 dynamic Miss Access

n2 L1 Static Miss N/A

n3 L1 & L2 dynamic Miss Miss

n4 L1 Static N/A N/A

n5 L2 Static N/A Miss

n6 L1 & L2 dynamic Miss Miss

n7 L2 Static Miss Access

n8 L2 Static N/A Access

The aggressiveness of the prefetching is the co-

production of all these four metrics and prefetching algo-
rithms itself. Usually, the more applied cache hierarchy,
the deeper prefetch degree and the larger trigger set
would lead to more aggressive prefetching. However, it
always comes with cache pollution and other side effects.
In the following, we introduce the eight selected prefetch-
ers briefly.

The first prefetcher n1 can tolerate out-of-order (OoO)
memory accesses by making prefetching based on the
recent memory access pattern [26]. The second prefetcher
n2 exploits various localities in both local and global
cache-miss streams, including global strides, local strides

and scalar patterns [27]. A multi-level prefetching frame-
work is applied in n3, which uses a sequential tagged
prefetcher at L1 cache and either an adaptive prefetcher
or a sequential tagged prefetcher at L2 cache [28]. With
the observation that memory accesses often exhibit repeti-
tive layouts spanning large memory region, n4 is the op-
timized implementation of spatial memory streaming
(SMS) including a novel mechanism of pattern bit-vector
rotation to reduce SMS storage requirement [29]. Combin-
ing the storage efficiency of reference prediction tables
(RPT) and high performance of program counter/delta
correlation (PC/DC) prefetching, n5 can substantially re-
duce the complexity of PC/DC prefetching by avoiding
expensive pointer chasing and re-computation of the del-
ta buffer [30]. The sixth prefetcher n6 applies a hybrid
stride/sequential prefetching schema at both L1 and L2
cache levels. Metrics such as prefetcher accuracy, lateness
and memory bandwidth contention are fed back to adapt
the aggressiveness of prefetching [31]. By understanding
and exploiting a variety of memory access patterns, n7
combines global history buffer and multiple local history
buffers to improve the coverage of prefetching [32]. Final-
ly, n8 is a stream-based prefetcher with several enhance-
ment techniques including constant stride optimization,
noise removal, early launch of repeat stream and dead
stream removal [33].

6.2 Performance Analysis

Table 5 summarizes the reduction of cache misses as a
result of applying the prefetchers. Note that different
prefetchers may target different cache levels; in this table,
we show the cache miss reduction of the lowest level
cache that the prefetcher is applied to. The last row shows
the lowest-level cache where prefetching is applied. For
example, n1 is applied to both L1 and L2 caches, and we
show the cache miss reduction of L2 cache; n2 is applied
to only L1, so we show the cache miss reduction of L1
cache. The results indicate that prefetching techniques are
very effective on XML parsing workloads, as most
prefetchers are able to reduce cache miss by more than
50%. In the best case, n3 is able to reduce L2 cache miss by
82% in SAX parser and 85% in DOM parser.

TABLE 5: REDUCTION IN CACHE MISSES

 n1 n2 n3 n4 n5 n6 n7

SAX 69% 43% 82% 82% 51% 40% 73%

DOM 77% 52% 85% 85% 61% 52% 77%
Cache
Level L2 L1 L2 L1 L2 L2 L2

In Figure 8, we show how the cache miss reduction

translates into performance improvement on SAX pars-
ing: it shows the impact of the eight prefetchers (n1 - n8)
as well as the average. The x-axis lists the seven bench-
marks we used and the y-axis shows the percentage of
performance improvement in terms of execution time
reduction. The results indicate that prefetching tech-
niques are able to improve SAX parsing performance by

Page 8 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 9

up to 10%. For instance, the parsing time of personal-
schema has been reduced by 7.24% on average. Looking
into each prefetching technique, we observe that n3
shows greatest advantage in improving the performance,
ranging from 2.58% to 9.72% across different benchmarks.
This is because n3 is the most aggressive prefetcher and
covers both L1 and L2 cache levels, thus resulting in the
best average performance.

Figure 8: Performance Improvement for SAX Parsing

Similarly, Figure 9 summarizes the performance im-
pact of prefetching on DOM parsing. The results indicate
that prefetching techniques are able to improve DOM
parsing performance by up to 20%. For instance, when
averaging the results, memory-side acceleration produces
13.74% execution cycle reduction for mystic-library. It is
obvious that the most effective prefetcher is still n3：even
in the worst case of resume_w_xsl, n3 can still reduce exe-
cution time by 6%. Note that different from SAX parsing,
DOM parsing must construct inner data structure in
memory for all elements. The bigger the document, the
more space it would consume and the more cache miss it
would induce. As a result, large-size benchmarks such as
mystic-library, physics-engine and standard can get a higher
performance gain from memory-side acceleration, rang-
ing from 7.65% up to 13.75%. These results confirm that
memory-side acceleration can be effective regardless of
the parsing models.

Figure 9: Performance Improvement for DOM Parsing

7 IMPLEMENTATION FEASIBILITY

By now we have shown that memory-side acceleration
can significantly improve XML parsing performance.
However, conventional wisdom is that prefetching re-

quires extra hardware resources, competes for limited bus
bandwidth, and consumes more energy. Thus, many
would argue that it is not worthwhile to implement
memory-side accelerators for XML parsing. In this section,
we address these doubts by validating the feasibility of
memory-side acceleration in terms of bandwidth utiliza-
tion, hardware cost and energy consumption.

7.1 Bandwidth Utilization

Contention for limited bus bandwidth often leads to seri-
ous performance degradation. Prefetching techniques
result in extra bus traffic and thus require extra bus
bandwidth. If the regular memory traffic of the applica-
tion itself has used up all the bus bandwidth, then the
contention brought in by memory-side acceleration might
hinder rather than improve performance. In order to val-
idate whether this is the case or not, we study the band-
width utilization of XML parsing workloads and the re-
sults are summarized in Table 6. The results show that
bus bandwidth utilization without prefetching is far away
from exhaustion. On average, bus utilization for SAX and
DOM parsing are only 3.72% and 5.51% respectively. This
indicates the performance of XML parsing is hurt by the
latency but not the bandwidth of memory subsystem, and
thus confirming that prefetching would be effective.

TABLE 6: BANDWIDTH CONSUMPTION WITHOUT PREFETCHING

Benchmarks SAX DOM

long 4.09% 5.55%

mystic-library 4.38% 7.46%

personal-shema 4.94% 6.31%

physics-engine 4.07% 6.08%

resume_w_xsl 0.97% 1.03%

test-opc 1.01% 5.25%

Standard 6.58% 6.89%

7.2 Hardware Cost and Energy Consumption

We extracted the hardware cost information from the de-
sign documents of the eight prefetchers and summarized
this information in Table 7. On average, these prefetchers
require about 28,000 bits of memory space. For instance,
n6 consists of a 14080-bit L1 prefetcher, a 4096-bit L2
prefetcher and eight 20-bit counters, producing a 32416-
bit hardware cost. All of their hardware cost is less than
or equal to 32 Kbits, which is not a significant amount of
hardware overhead in modern high-performance proces-
sor design.

TABLE 7: HARDWARE COST OF PREFETCHERS

Prefetchers Hardware Cost (bits)

n1 32036

n2 20329

n3 20787

n4 30592

n5 25480

n6 32416

Page 9 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

n7 30720

n8 32768

Next we study how these memory-side accelerators

impact system energy consumption. When calculate the
overall energy consumption, we sum up the energy
comsumed by the memory system and the energy
cosumed by the hardware prefetcher. As stated in Equa-
tions 1-3, energy can be classified into two categories:
static energy and dynamic energy. The first one is the
product of the overall execution time (t) and the static
power consumption (Pstatic) of system; whereas the second
component can be derived by multiplying the number of
read/write accesses (nm) and the energy dissipated on
each access (E’m). The static power is a constant across all
the implementations so that the static energy is just de-
termined by how prefetching can shorten the execution
time.

(1)

prefstaticpref EE

EEE









dynamic

memstaticmemdynamic

(2) tPE staticstatic 

(3)
' mmdynamic EnE 

Using our simulation framework consisting of
CMP$IM and CACTI, we can generate energy parameters
of different storage and interconnect structures imple-
mented in different technologies. Here, we focus on the
implementation with state-of-the-art 32nm technology
and the results are summarized in Figures 10 and 11. In
these figures, we use energy consumption with no
prefetching as our baseline, thus a positive number indi-
cates that the prefetcher consumes extra energy, and a
negative number indicates otherwise. Note that in 32nm
technology, static energy is comparable to dynamic ener-
gy [24]. The prefetchers generate extra memory requests
and bus transactions, thus adding dynamic energy con-
sumption. On the other hand, prefetchers accelerate XML
parsing execution, resulting in reduction of static energy
consumption. If the static energy reduction surpasses the
dynamic energy addition, then the prefetcher results in
overall system energy reduction.

As shown in Figure 10, in SAX parsing most prefetch-
ers lead to more energy consumption: it is due to the in-
crease of dynamic energy dissipation coming from excess
memory accesses incurred by prefetching. Nevertheless,
when we look into details, n5 always leads to energy effi-
ciency, resulting in 1% to 4.5% energy saving across the
benchmarks. Similarly, n1 results in energy saving in
about half of the cases. This is because n1 and n5 are rela-
tively conservative prefetching techniques: they either
prefetch at only one cache level or prefetch a small
amount data each time.

Figure 10: Energy Consumption of SAX Parsing

In Figure 11, we summarize how acceleration impacts
energy consumption in DOM parsing. Different from the
results in SAX parsing, most prefetchers become energy-
efficient in many cases due to their ability to further re-
duce execution time in DOM parsing. Note that static
energy is the product of static power and time, since static
power is constant, by reducing execution time, we can
reduce static energy as well. Identical with Figure 9, n5 is
still the most energy-efficient prefetcher which archives as
high as 12.77% energy saving in mystic-library. Even when
running its worst case of resume_w_xsl, n5 can still reduce
overall energy consumption by almost 3%.

Figure 11: Energy Consumption of DOM Parsing

8 AN EXEMPLARY HARDWARE IMPLEMENTATION

The results from Section 6 indicate that n3 provides the
best performance as it being the most aggressive
prefetcher. In this section we use n3 as a case study to
discuss the implementation details of using prefetchers to
improve XML parsing performance.

Prefetcher n3 is a multi-level prefetching framework
that consists of six components: in L1 cache, it uses a se-
quential tagged prefetcher; in L2 cache, it implements a
selective correlating prefetcher based on a Differential
Finite Context Machine (PDFCM), which predicts the next
occurrence by considering sequences of differences be-
tween consecutive addresses issued by the same memory
instruction. To remove redundant memory accesses, in L1
cache it uses Miss State Holding Register (MSHR) struc-
tures to hold memory accesses to the same address. Simi-
larly, in L2 cache, it uses a Prefetch Memory Address File
(PMAF) structure, which is a FIFO structure similar to
eliminate prefetching requests to blocks that have already

Page 10 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 11

been issued to the next memory level. In addition, to con-
trol the aggressiveness of the L1 and L2 prefetch engines,
it applies a degree controller at each cache level.

First, in order to find out the chip area overhead and
the power overhead of this design, we implemented the
n3 design on a Xilinx Spartan-3 FPGA board and used the
XPower Analyzer to generate power consumption infor-
mation. The results show that the overall power con-
sumption of this design is 32.6 mW. In Figure 12, we
break down the power consumption by different hard-
ware components: note that the clock is the highest power
consumer, accounting for 68% of the total power con-
sumption. The next biggest power consumer is the signals,
consisting of 26% of the power consumption. On the other
hand, DCM and Logic make up a small proportion of the
total consumption, with each just accounting for 3% of the
overall energy consumption.

Figure 12: Power Consumption of the Prefetcher Implementation on
FPGA

The next question we raised was how this power con-
sumption data compared to that of a simple processor,
and what the hardware overhead of this design is. In Ta-
ble 8, we summarize the hardware cost and power con-
sumption of n3 prefetcher: the hardware utilization
measures include the number of flip-flops (#FF), and the
number of look-up tables (#LUT). For comparison pur-
pose, we also present the resource utilization of the
eMIPS processor, a simple MIPS in-order processor im-
plementation [43]. The results show that eMIPS requires
17055 flip-flops, and 26106 look-up tables. Compared to
the eMIPS processor, the hardware resource consumption
of n3 prefetcher consists of 582 flip-flops and 1005 look-
up tables, which represents less than 5% hardware over-
head. In terms of power consumption overheads, eMIPS
consumes 356 mW whereas prefetcher n3 consumes 32
mW, which represents 9% power consumption overhead.
Note that at the first sight, 9% power consumption over-
head may seem high, but eMIPS is a very simple in-order
processor that runs at very low frequency (100 MHz).
Comparing to commercial processors, such as Intel
Xeon®, which consumes about 100 W of power, the pow-
er overhead of this prefetcher design is really negligible.

TABLE 8: HARDWARE COST AND POWER CONSUMPTION COM-

PARISON BETWEEN EMIPS AND PREFETCHER

 # FF #LUTs Power (mW)

eMIPS 17055 26106 356.36

Prefetcher n3 582 1005 32.6

As mention above, prefetcher n3 consists of prefetch
engines at both L1 and L2 cache levels, and our imple-
mentation data indicates that the area overhead of the L1
prefetch engine is about one third of that of the L2
prefetch engine. In this part we try to understand whether
it is worthwhile to implement prefetch engines at both L1
and L2 levels, or whether it is sufficient to implement a
prefetch engine at only the last-level cache (L2 in this
case).

In Figure 13, we compare the performance of the two-
level (both L1 and L2) prefetcher versus that of the L2-
only prefetcher. The y-axis shows the performance im-
provement achieved by the two-level prefetcher com-
pared to the L2-only prefetcher. Across all benchmarks
with both DOM and SAX parsers, two-layer prefetching
outperforms the L2-only prefetcher, but providing only
1~2% performance gain. This is because the latency of L1
cache miss is several orders of magnitude smaller than
that of memory access. When applying the two-level
prefetcher, some L1 cache misses can be reduced, howev-
er, the impact on overall performance is small. In other
words, we spend 1/3 more area budget to achieve only
1~2% of performance gain, which implies that it may not
be a cost-effective option to implement the two-level
prefetcher.

Figure 13: Performance Comparison of L2-only vs. Two-Level
Prefetchers

In next step, we compare the energy consumptions as a
result of applying the two-level prefetcher versus apply-
ing the L2-only prefetcher, and the data is presented in
Figure 14. The y-axis shows the system energy overhead
as a result of applying the L2-only prefetcher compared to
that of applying a two-level prefetcher: a positive number
represents that applying a L2-only prefetcher would con-
sume more energy; whereas a negative number indicates
otherwise.

Page 11 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

Figure 14: Energy Consumption Comparison of L2-Only vs. Two-
Level Prefetchers

It is generally recognized that multi-layer mechanism
might incur more energy consumption due to their in-
creased hardware overheads. However, as shown in Fig-
ure 14: for most cases the two-layer prefetcher leads to
energy efficiency, on average producing a 2.46% energy
reduction in SAX parsing and 4.27% reduction in DOM
parsing. For benchmark long, applying the two-level
prefetcher introduces an energy saving of over 10%; and
for personal-schema and test-opc, its improvement also
achieves over 6%. Although a two-level prefetcher incurs
1/3 of area and power overhead compared to a L2-only
prefetcher, since the power consumption of the prefetcher
is negligible comparing to the power consumption of the
system, and thus the power overhead of the two-level
prefetcher over the L2-only prefetcher also becomes neg-
ligible. On the other hand, the two-level prefetcher pro-
vides 1~2% performance improvement, leading to reduc-
tion of system-level energy consumption, thus the two-
level prefetcher design actually leads to system-level en-
ergy efficiency.

 Also, it is worth noting that for some benchmarks, ap-
plying a two-layer prefetcher may lead up to 4% extra
energy consumption. That is because multi-layer
prefetching may also introduce cache pollution problems
that incur excessive memory accesses, offsetting the static
energy reduction from reduced execution time. To sum
up, if energy efficiency was the optimization goal, we
should use simple but aggressive prefetching engines,
such as n5. Otherwise, if performance was the optimiza-
tion goal, we should use complex but aggressive prefetch-
ing engines such as n3. Specifically, in n3, it is worthwhile
to implement a multi-layered scheme as it provides mar-
ginal performance improvement and better energy effi-
ciency.

9 CONCLUSIONS

Different from previous research work which focused on
computation acceleration of XML parsing, we first identi-
fied memory access as one of the performance bottle-
necks. We then proposed to make acceleration for XML
parsing from memory side by improving its data loading
performance. The results show that memory-side acceler-
ators exhibit considerable effectiveness across existing
parsing models. They are able to reduce cache misses by
up to 80%, which translates into up to 20% of perfor-
mance improvement.

 We also verified the feasibility of our proposal by
checking its implementation impact on bandwidth, ener-
gy consumption and hardware cost. The results show that
memory-side accelerator can produce up to 12.77% of
energy saving when implemented in 32nm technology.
For the eight accelerators studied, all their hardware cost
is within 32 Kbits which is a very small and reasonable
overhead considering modern hardware budget. Regard-
ing bandwidth, XML parsing performance is hurt by the
latency but not by the throughput of the memory subsys-
tem, thus confirming that memory-side acceleration will
not likely result in resource contention of memory bus
bandwidth. In conclusion, memory-side acceleration of
XML parsing is not only effective but also feasible.

10 FUTURE WORK

The next step of this research project is to integrate
memory-side and computations-side accelerators of XML
parsing into a single core, and optimize its performance
and power consumption. Then, ultimately, we are going
to integrate this core onto many-core architectures to act
as a Data Exchange Frontend (DEF).

Our ultimate goal is to build a heterogeneous many-
core chip, which consists of two kinds of cores: general-
purpose cores and specialized cores. The general-purpose
ones take care of conventional general computing work-
load as well as control. The specialized ones are designed
for some critical and commonly used functions, for ex-
ample, XML parsing, garbage collection (GC), and
memory encryption/decryption. With the specialized core
design, we can achieve both performance and energy im-
provement.

ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion under Grant No. CCF-1065448, ECCS-1125762, as
well as the China Scholarship Council. Any opinions,
findings, and conclusions as well as recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the

limits of soap performance for scientific computing. In Pro-

ceedings of the 11 th IEEE International Symposium on High

Performance Distributed Computing HPDC-11 20002

[2] M. R. Head, M. Govindaraju, R. van Engelen, andW. Zhang.

Grid scheduling and protocols—benchmarking xml processors

for applications in grid web services. In SC ’06: Proceedings of

the 2006 ACM/IEEE conference on Supercomputing, page 121,

New York, NY, USA, 2006. ACM Press.

[3] P. Apparao, R. Iyer, R. Morin, and et al., “Architectural charac-

terization of an XML-centric commercial server workload,” in

33rd International Conference on Parallel Processing, 2004

[4] P. Apparao and M. Bhat. A detailed look at the characteristics

of xml parsing. In BEACON ’04: 1st Workshop on Building

Block Engine Architectures for Computers and Networks, 2004

Page 12 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

14TANG ET AL.: ACCELERATION OF XML PARSING THROUGH PREFETCHING 13

[5] M. Nicola and J. John, “XML parsing: A threat to database

performance,” in Proceeding of the 12th International Confer-

ence on Information and Knowledge Management, 2003

[6] International HapMap Project:

http://hapmap.ncbi.nlm.nih.gov/

[7] SAX Parsing Model: http://sax.sourceforge.net

[8] W3C, “Document object model (DOM) level 2 core specifica-

tion.” http://www.w3.org/TR/DOM-Level-2-Core

[9] K. Chiu, T. Devadithya, W. Lu, and A. Slominski. A binary xml

for scientific applications. In Proceedings of e-Science 2005.

IEEE, 2005.

[10] XimpleWare, “VTD-XML: The Future of XML Processing,”

(accessed 10 Mar 2007), http://vtdxml. sourceforge.net.

[11] W. Lu, K. Chiu, Y. Pan, A Parallel Approach to XML Pars-

ing,In Proceedings of The 7th IEEE/ACM International Confer-

ence on Grid Computing, Barcelona, Spain, Sept 2006

[12] Michael R. Head and Madhusudhan Govindaraju. "Approach-

ing a Parallelized XML Parser Optimized for Multi-Core Pro-

cessor”. SOCP’07, June 26, 2007, Monterey, California, USA.

ACM

[13] R. D. Cameron, K. S. Herdy, D. Lin, High Performance XML

Parsing Using Parallel Bit Stream Technology, In Proceedings

of the Conference of the Center for Advanced Studies on Col-

laborative Research, Ontario, Canada, Oct 2008

[14] L. Zhao, L. Bhuyan, Performance Evaluation and Acceleration

for XML Data Parsing, In Proceedings of the 9th Workshop on

Computer Architecture Evaluation using Commercial Work-

loads, Texas, USA, 2006

[15] J. Moscola, J. W. Lockwood, Reconfigurable Content-based

Router using Hardware-Accelerated Language Parser, In

theACM Transactions on Design Automation of Electronic

Systems, Vol.13, 2008

[16] B. Nag, “Acceleration techniques for XML processors,” in XML

Conference & Exhibition, November 2004.

[17] Zefu Dai, Nick Ni, Jianwen Zhu. A 1 Cycle-Per-Byte XML

Parsing Accelerator. FPGA’10, 2010

[18] Apache Xerces: http://xerces.apache.org/index.html

[19] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A Pin-

Based On-The-Fly Multi-Core Cache Simulator. In MoBS, 2008

[20] P. Shivakumar, N.P. Jouppi, CACTI3.0: an integrated cache

timing, power, and area model, WRL Research Report 2001

[21] Intel Vtune, http://software.intel.com/en-us/intel-vtune/

[22] XML Parsing Accelerator with Intel® Streaming SIMD Exten-

sions 4 (Intel® SSE4), December 15, 2008.

http://software.intel.com/en-us/articles/xml-parsing-

accelerator-with-intel-streaming-simd-extensions-4-intel-sse4/

[23] A. Longshaw, “Scaling XML parsing on Intel architecture,”

Intel Software Network Resource Center, November 2008.

http://www.developers.net/intelisnshowcase/view/537

[24] Power vs. Performance: The 90 nm Inflection Point,

http://www.xilinx.com/publications/archives/solution_guides/

power_management.pdf

[25] Windows Performance Analysis Tool,

http://msdn.microsoft.com/en-us/performance/cc825801

[26] Y Ishii, M Inaba, K Hiraki, “Access map pattern matching

prefetch: Optimization friendly method”. The 1st international

Journal of Instructional Level Parallelism Data Prefetching

Championship (DPC-1), 2009

[27] M Dimitrov, H Zhou, “Combining local and global history for

high performance data prefetching”, The 1st international

Journal of Instructional Level Parallelism Data Prefetching

Championship (DPC-1), 2009

[28] LM Ramos, JL Briz, PE Ibáñez, V Viñals, “Multi-level Adaptive

Prefetching based on Performance Gradient Tracking”, The 1st

international Journal of Instructional Level Parallelism Data

Prefetching Championship (DPC-1), 2009

[29] M Ferdman, S Somogyi, B Falsafi, “Spatial Memory Streaming

with Rotated Patterns”, The 1st international Journal of In-

structional Level Parallelism Data Prefetching Championship

(DPC-1), 2009

[30] M Grannaes, M Jahre, L Natvig, “Storage Efficient Hardware

Prefetching using Delta Correlating Prediction Tables”, The 1st

international Journal of Instructional Level Parallelism Data

Prefetching Championship (DPC-1), 2009

[31] S Verma, DM Koppelman, L Peng, “A Hybrid Adaptive Feed-

back Based Prefetcher”, The 1st international Journal of In-

structional Level Parallelism Data Prefetching Championship

(DPC-1), 2009

[32] A Sharif, HHS Lee, “Data Prefetching Mechanism by Exploit-

ing Global and Local Access Patterns”, The 1st international

Journal of Instructional Level Parallelism Data Prefetching

Championship (DPC-1), 2009

[33] G Liu, Z Huang, JK Peri, X Shi, L Peng, “Enhancement for

Accurate Stream Prefetching”, The 1st international Journal of

Instructional Level Parallelism Data Prefetching Champion-

ship (DPC-1), 2009

[34] STAX parsing model: http://jcp.org/en/jsr/detail?id=173

[35] D. Callahan, K. Kennedy, and A. Portereld. “Software

prefetching”. In Proceedings of the Fourth International Con-

ference on Architectural Support for Programming Languages

and Operating Systems, pages 40-52, April 1991.

[36] D.G. Perez, G. Mouchard, and O. Temam, “Microlib: A case for

the quantitative comparison of micro-architecture mecha-

nisms”, In Proceedings of International Symposiums on Mi-

croarchitecture (MICRO), 2007.

[37] A.J. Smith, “Sequential Program Prefetching in Memory Hier-

archies”, IEEE Transactions on Computers, 11(12), Dec. 1978.

[38] J. Fu and J. Patel, “Stride directed prefetching in scalar proces-

sors”, MICRO-25, 1992.

[39] N. Jouppi, “Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch

buffers”, in Proceedings of International Symposium on Com-

puter Architectures (ISCA), 1990.

[40] Santhosh Srinath, Yale N. Patt, “Feedback Directed Prefetch-

ing: Improving the Performance and Bandwidth-Efficiency of

Hardware Prefetchers. In Proceedings of the International

Symposium on High-Performance Computer Architecture

(HPCA), 2007.

[41] Xilinx Spartan III

http://www.xilinx.com/products/devkits/HW-SPAR3-SK-UNI-

G.htm

[42] Xilinx XPower

http://www.xilinx.com/products/design_tools/logic_design/ver

ification/xpower.htm

[43] eMIPS: http://research.microsoft.com/en-

us/projects/emips/default.aspx

[44] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu. “Data

access microarchitectures for superscalar processors with

compiler-assisted data prefetching”. In Proceedings of Micro-

computing 24, 1991.

Page 13 of 18 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://hapmap.ncbi.nlm.nih.gov/
http://sax.sourceforge.net/
http://www.w3.org/TR/DOM-Level-2-Core
http://xerces.apache.org/index.html
http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/articles/xml-parsing-accelerator-with-intel-streaming-simd-extensions-4-intel-sse4/
http://software.intel.com/en-us/articles/xml-parsing-accelerator-with-intel-streaming-simd-extensions-4-intel-sse4/
http://www.developers.net/intelisnshowcase/view/537
http://www.xilinx.com/publications/archives/solution_guides/power_management.pdf
http://www.xilinx.com/publications/archives/solution_guides/power_management.pdf
http://msdn.microsoft.com/en-us/performance/cc825801
http://people.engr.ncsu.edu/hzhou/dpc_submit.pdf
http://people.engr.ncsu.edu/hzhou/dpc_submit.pdf
http://www.multicoreinfo.com/research/papers/2009/jilp-dpc09-ramos.pdf
http://www.multicoreinfo.com/research/papers/2009/jilp-dpc09-ramos.pdf
http://www.multicoreinfo.com/research/papers/2009/jilp-dpc09-verma.pdf
http://www.multicoreinfo.com/research/papers/2009/jilp-dpc09-verma.pdf
http://www.jilp.org/dpc/online/papers/06sharif.pdf
http://www.jilp.org/dpc/online/papers/06sharif.pdf
http://jcp.org/en/jsr/detail?id=173
http://www.xilinx.com/products/devkits/HW-SPAR3-SK-UNI-G.htm
http://www.xilinx.com/products/devkits/HW-SPAR3-SK-UNI-G.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm
http://research.microsoft.com/en-us/projects/emips/default.aspx
http://research.microsoft.com/en-us/projects/emips/default.aspx

For Peer Review
 O

nly

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

[45] A. C. Klaiber and H. M. Levy. “Architecture for software-

controlled data prefetching”. In Proceedings of the 18th Annu-

al International Symposium on Computer Architecture, pages

43-63, May 1991.

[46] A. K. Porterfield. “Software Methods for Improvement of

Cache Performance on Supercomputer Applications”. PhD

thesis, Department of Computer Science, Rice University, May

1989

[47] Intel Labs, "SCC Platform Overview," Intel Many-core Appli-

cations Research Community, Revision 0.75, September 2010.

[48] J.L. Baer and T.F. Chen. “An Effective On-chip Preloading-

Scheme to Reduce Data Access Penalty”. In Int. Conf. on Super-

computing (ICS) pp.176-186, 1991.

[49] A. Lai, C. Fide and B. Falsafi. Dead-Block Correlating Prefetch-

ers”. In Procs. of the 28th Intl. Symp. on Computer Architecture

(ISCA) pp. 144-154, 2001

[50] Mark J. Charney and Anthony P. Reeves. “Generalized correla-

tion-based hardware prefetching”. TR EECEG-95-1, School of

Electrical Engineering, Cornell University, February 1995.

[51] Smith, A.J., “Cache Memories,” Computing Surveys, Vol.14,

No.3, September 1982, p. 473-530.

Jie Tang is a Ph.D. candidate in Beijing Insti-
tute of Technology, China. Her research inter-
ests include high performance computer archi-
tecture, cloud computing, and embedded sys-
tem. Jie’s Ph.D. thesis title is “Performance
Acceleration and Energy Efficiency Mecha-
nisms in Cloud Computing Environment”, in
which she studies the impact of hardware ac-
celeration and prefetching techniques in en-
hancing both the performance and energy effi-

ciency for cloud computing environment. During her Ph.D. study, Jie
also worked as a visiting researcher in the Center for Embedded
Computer Systems, University of California, Irvine. Jie holds a B.S.
in Computer Science from National University of Defense Technolo-
gy, China.

Shaoshan Liu is currently with Microsoft. He
received Ph.D. in Computer Engineering,
M.S. in Biomedial Engineering, M.S. in Com-
puter Engineering, and B.S. in Computer
Engineering, respectively in 2010, 2007,
2006, and 2005 respectively, all from the
University of California, Irvine. His research
interests include parallel computer architec-
tures, embedded systems, runtime systems,
as well as biomedical engineering.

Chen Liu is an assistant professor in the
Department of Electrical and Computer En-
gineering at Florida International University,
Miami, Florida. He received the B.E. degree
in Electronics and Information Engineering
from University of Science and Technology
of China, Hefei, Anhui, China in 2000, the
M.S. degree in Electrical Engineering from
the University of California, Riverside in
2002 and the Ph.D. degree in Electrical and

Computer Engineering from the University of California, Irvine in
2008, respectively. His research interests include multi-core multi-
threading architecture, the interaction between system software and
microarchitecture, power-aware many-core computing, hardware
acceleration techniques and reconfigurable computing. He is a
member of IEEE and IEEE Computer Society. He also served as the
chair of Computer Society Chapter, IEEE Miami Section from 2010
to 2011.

Zhimin Gu is a professor of computer science at
Beijing Institute of Technology. Prior to that he was
visiting scholar of computer science at University of
Birmingham in UK from 2003 to early period of 2004,
and associate professor and post-doctorate re-
searcher of computer science at Northwest Poly-
technic University from 1997 to 1999. He received
the BS in computer science from Shanxi University in

1985, and the MS in Computer science from Harbin Institute of
Technology in 1991, and the PhD in computer science from Xian
Jiaotong University in 1997.

Jean-Luc Gaudiot received the Diplôme
d’Ingénieur from the École Supérieure
d’Ingénieurs en Electrotechnique et Elec-
tronique, Paris, France in 1976 and the MS and
PhD degrees in Computer Science from the
University of California, Los Angeles in 1977
and 1982, respectively. He is currently a Pro-
fessor and Chair of the Electrical and Computer
Engineering Department at the University of
California, Irvine. Prior to joing UCI in January

2002, he was a Professor of Electrical Engineering at the University
of Southern California since 1982, where he served as and Director
of the Computer Engineering Division for three years. He has also
done microprocessor systems design at Teledyne Controls, Santa
Monica, California (1979–1980) and research in innovative architec-
tures at the TRW Technology Research Center, El Segundo, Cali-
fornia (1980–1982). He consults for a number of companies involved
in the design of high-performance computer architectures. His re-
search interests include multithreaded architectures, fault-tolerant
multiprocessors, and implementation of reconfigurable architectures.
He has published over 170 journal and conference papers. His re-
search has been sponsored by NSF, DoE, and DARPA, as well as a
number of industrial organizations. In January 2006, he became the
first Editor-in-Chief of IEEE Computer Architecture Letters, a new
publication of the IEEE Computer Society, which he helped found to
the end of facilitating short, fast turnaround of fundamental ideas in
the Computer Architecture domain. From 1999 to 2002, he was the
Editor-in-Chief of the IEEE Transactions on Computers. In June
2001, he was elected chair of the IEEE Technical Committee on
Computer Architecture, and re-elected in June 2003 for a second
two-year term.He is a member of the ACM, of the ACM SIGARCH,
and of the IEEE. He has also chaired the IFIP Working Group 10.3
(Concurrent Systems). He is one of three founders of PACT, the
ACM/IEEE/IFIP Conference on Parallel Architectures and Compila-
tion Techniques, and served as its first Program Chair in 1993, and
again in 1995. He has also served as Program Chair of the 1993
Symposium on Parallel and Distributed Processing, HPCA-5 (1999
High Performance Computer Architecture), the 16th Symposium on
Computer Architecture and High Performance Computing (Foz do
Iguaçu, Brazil), the 2004 ACM International Conference on Compu-
ting Frontiers, and the 2005 International Parallel and Distributed
Processing Symposium.In 1999, he became a Fellow of the IEEE.
He was elevated to the rank of AAAS Fellow in 2007.

Page 14 of 18Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

