
Sunday, September 16, 2007 12:08 PM

$$\frac{Chapter 3}{24. (a)} P = \left(\frac{T_{ccH} + T_{ccL}}{2}\right) V_{cc} = \left(\frac{16mAt + 4.4mA}{2}\right) \cdot (5.5)$$

$$= 16.5 \text{ mV}$$
(b) $V_{OH} \min = 2.7V$
(c) $t_{PLH} = t_{PHL} = 15 \text{ ns}$
(d) $V_{OL} = 0.4V$ (@ $T_{OL} = 4.0mA$)
$$= 0.5V$$
 (@ $T_{OL} = 8.0mA$)
(e) $t_{PLH} = t_{PHL} = 110 \text{ ns}$ ($V_{cc} = 2vA = 72125^{\circ}c$)
$$= 55 \text{ ns}$$
 ($V_{cc} = 3V = 72125^{\circ}c$)
$$= 22 \text{ ns}$$
 ($V_{cc} = 45v = 725^{\circ}c$)

Unfiled Notes Page 1

Chapter 14
1. NAME Norise margin_H = VoH(min) - VIH(min) =
=
$$2\cdot2 - 2\cdot5 = -0.3 \quad \langle 0$$

No, chere are not compatible.
2. $\frac{1}{1}$ $\frac{1}{2}$
 $NM_L = Noise Margin_L = VIL(max)_2 - VoL(max)_1$
 $= 0.75 - 0.45 = 0.3V > 0$
Yes, they are compatible
4. $NM_H = VoH(min)_1 - VIH(min)_2 = 2\cdot4 - 2\cdot25 = 0.15V$
 $NM_L = VIL(max)_2 - VoL(max)_1 = 0.65 - 0.4 = 0.25V$
 $NM_L = VIL(max)_2 - VoL(max)_1 = 0.65 - 0.4 = 0.25V$
 $MM_L = VIL(max)_2 - VoL(max)_1 = 0.65 - 0.4 = 0.25V$
 $MM_L = VIL(max)_2 - VoL(max)_1 = 0.15 + 0.25$

PD (aug) = (10 + 17.5)/2 = 13.75 m/W

9. <u>Sale A</u> Average prop delay = <u>Ins+1:2ns</u> = 1.1ns Speed-power product = (1.1ns)(1SmW) = 16:5pJ

Gate B
Average prop delay =
$$\frac{5+4}{2}$$
: 4:5ns
Speed-power product = (4:5ns) (8mW): 36pJ
Bate C
Average prop delay = $\frac{10ns+10ns}{2}$ = 10ns
Speed-power product = ($10ns$)(0:5mW)=5pJ.
II. 62 is overloaded because it has 12 loads

(c) 61 and put is high, it is sourcing 6
Loads.

$$I_7 = 6 (40 \text{ MA}) = 240 \text{ MA} \left< \left| -0.4 \text{ mA} \right|$$

62 output is low, it is sinking
currents from 2 loads
 $I_7 = 2(-1.6 \text{ mA}) = -3.2 \text{ mA}$ OK
63 output is high & it is sourcing
2 Loads
 $I_7 = 2(40 \text{ MA}) = 80 \text{ MA}$ OK

$$\begin{array}{l} \begin{array}{c} \underline{2} \underline{\lambda} \\ \underline{0} \end{array} X = \underline{A \cdot B \cdot \overline{C} \cdot \overline{D}} \\ \underline{(b)} \hspace{0.5cm} X = (\underline{A \cdot B \cdot c}) \cdot (\overline{D \cdot E}) \cdot (\overline{F \cdot G}) \\ \underline{(c)} \hspace{0.5cm} X = (\overline{A + B}) \cdot (\overline{c + b}) \cdot (\overline{E + F}) \cdot (\overline{G + H}) \end{array}$$

23. The worst case for deterining the minimum
value of Rp is when only one gate is
sinking all the current (40mA maximum)
For 10 unit Load:
$$I_L = 10 \times \left(-1.6 \text{ mA}\right) = 16 \text{ mA}$$

Current through Rp (for (a), (b) * (c))
= 40 mA - 16 mA = 24 mA

$$R_{p} = \frac{5 - 0.25}{24 mA} = 198 SC (ohm)$$