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Background

• A drop when introduced on a horizontal solid surface will
spread and attain an equilibrium shape.

• A drop on a horizontal surface can be made to move by 
applying forces to it.

• Forces can be created by two methods:

– Wettability gradient (contact angle gradient)

– Thermocapillarity (temperature gradient)
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Why does a drop move in a 
temperature gradient?

• Surface tension decreases 
with increase in temperature.
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Applications

• Lab-on-a-chip.
• Chemistry
• Biotechnology

• Reduced gravity              
(or space) experiments.

It is basically a transport mechanism for liquids 
without the need for a conventional mechanism



Literature Review



Theory
• Brochard (1989)

• Developed a 2D model for small contact angles 
using lubrication theory, for both wettability and 
temperature gradients

• Ford and Nadim (1993)
• Developed a 2D model for an arbitrarily-shaped 

drop using lubrication theory
• The model allowed for the possibility of change in 

the contact angles due to a temperature gradient

• Subramanian et al. (2005)
• Developed a 3D model using lubrication theory
• The model was developed and used for

wettability gradients



Experiments employing 
temperature gradients

• Bouasse (1924) performed experiments with an oil drop 
on a slightly tilted metal wire. The drop moved up when 
the lower end of the wire was heated.

• Brzoska et al. (1993) studied the motion of silicone oil 
drops on silanized surfaces. 

• Yarin et al. (2002) studied the motion of drops of 
different alkanes along a glass fiber.

• Chen et al. (2005) performed experiments with various 
alkanes on silanized surfaces. 



Objectives
• To measure the velocities of liquid drops of various

sizes at different gradients.

• To measure the contact angle as a function of
temperature .

• To extend the theoretical model developed by
Subramanian et al. (2005) for temperature gradients.

• To compare the measured velocities with predictions
from theory.



Schematic of the 
experimental apparatus



Cameras

Gradient block

Nanoliter pump

Syringe



Thermal gradient block



Surface Preparation
• A glass surface is cleaned with deionized water, acetone

and methanol.

• The surface is then washed with base Piranha (30:70;
NH4OH :H2O2) solution.

• Next the surface is coated with PGMA using a spin
coating method.

• Then a PDMS layer is adhered onto the PGMA layer on
the glass surface.



Experimental procedure
• A steady state temperature gradient is established using

circulating fluid from constant temperature baths

• The coated glass slide is then placed on the block
surface and sufficient time is allowed for a steady
gradient to be established on the surface

• Next, decane drops of different sizes are introduced on
different tracks on the surface and their motion is
monitored using video cameras.

• The captured images are then tracked using
SPOTLIGHT which yields position vs. time data.

• The instantaneous velocity is deduced by finding the
slope of the position vs. time curve.



Theoretical model
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Volumetric flow condition
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Force at the contact line
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Decane Results



Contact angle measurements
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Predicted vs observed slopes
Temperature 

gradient 
(K/mm)

Observed 
slope 

(Pa x 10-4)

Predicted 
slope 

(Pa x 10-4)

Percentage 
discrepancy 

in slope

Contact 
angle 

decreased 
by  

1.05 0.805 ± 0.175 1.19 ± 0.14 48.4 13.9

1.85 1.90 ± 0.10 2.57 ± 0.23 35.4 9.4

2.77 4.25 ± 0.4 5.01 ± 0.40 17.9 0.6

1
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Low gradient
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Hexadecane Results



Theory vs experiments
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Slopes comparison
Temperature 

gradient 
(K/mm)

Observed 
slope 

(Pa x 10-4)

Predicted 
slope 

(Pa x 10-4)

Percentage 
discrepancy in 

slope

1.02 0.254 ± 1.046 1.95 ± 0.15 665

1.89 0.83 ± 0.33 3.68 ± 0.37 343

2.78 1.64 ± 4.12 5.12 ± 0.42 212



Squalane Results
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Slopes comparison
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Aspect ratio of squalane
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Conclusions

• The contact angle of decane increases with
increasing temperature.

• The velocity of a drop scales approximately linearly
with size in the range of the data collected.

• The velocity appears to decrease with increasing
viscosity.

• The slopes of the prediction are reasonable
considering the approximations in developing the
theory.

• The slopes of the predictions were found to be very
sensitive to contact angle.

• Drop below a critical size did not move. This indicates
the possible existence of contact angle hysteresis.

Decane



Hexadecane
• Hexadecane drops are larger than the decane
drops, so that their shape is influenced significantly
by gravity.

• The velocity of hexadecane drops also scales
approximately linearly with radius.

• Velocity appears to decrease with increasing
viscosity.

• Observed velocities are much smaller than those
predicted. The reasons are not obvious.

• There is clear evidence of a critical radius below
which a drop does not move in a given
temperature gradient.



• In order to exceed the critical radius, large drops had
to be used; gravity plays a significant role in deforming
the shapes of these drops

•the footprints of squalane drops are well-deformed
from a circle, and the aspect ratio changes during the
motion of the drop

•The velocity of squalane drops increases as the
viscosity increases

•The velocity of squalane drops scales approximately
linearly with the average radius

• The predictions are much worse than in the other
cases; this may be connected to the extreme
deformation of the footprints of the drops.

Squalane



Recommendations

• Low contact angles should be measured with a
better technique.

• The predictions for hexadecane and squalane
were very different from experimental data. It
would be interesting to study those liquids,
particularly squalane in detail.
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