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It is shown that a flat interface between a soluble gas and a liquid that contains an arbitrary number
of partially wetting nonidentical spheres is linearly stable to slight perturbations caused by fluctuations
in the gas volume. Stability is proved by showing that the rate of change of the volume of the gas with
curvature of the interface is positive in the neighborhood of the equilibrium state of zero interface curvature.
Physically, the volume fluctuations induce fluctuations in the curvature of the interface that would naturally
lead to dissolution of gas into the liquid in the case of positive curvature and entry of gas into the bubble
in the case of negative curvature, either of which restores equilibrium. This result may possibly explain
the unusual long-term stability of gas bubbles covered by colloidal particles in the recent experiments of
Du et al. (Du, Z.; Bilbao-Montoya, M. P.; Binks, B. P.; Dickinson, E.; Ettelaie, R.; Murray, B. S. Langmuir
2003, 19, 3106).

Introduction

It was found by Du et al.1 that the dissolution of isolated
air bubbles in water can be arrested by the use of partially
hydrophobic colloidal silica particles suspended in the
liquid. The bubbles are introduced into water that is
exposed to air across a flat gas-liquid interface. The water,
therefore, is presumably saturated with the components
of air at the prevailing temperature and pressure.
Normally, the pressure inside the bubble should be larger
than that in the air because of the effect of surface tension.
This larger pressure leads to a larger concentration of
dissolved air at the bubble-water interface than that
prevailing in the bulk liquid (strictly speaking, one should
consider each component of air separately, but for con-
venience we lump them together). As a result, the air
diffuses away from the interface, and the bubble shrinks.
In the experiments of Du et al.1 the colloidal particles
were found to adsorb at the interface, and under the right
conditions, the air bubbles were found to remain nearly
constant in size over a period of several days, in contrast
to bubbles stabilized by protein foam stabilizers, which
disappeared in 1-2 h. The authors do not offer an
explanation of the mechanism of this long-term stabiliza-
tion. Based on additional experiments, Dickinson et al.2
suggested that the observed stability is likely caused by
the formation of a continuous network of particles on the
bubble surface (as well as in the bulk); however, even if
the spheres are packed as closely as possible, unless they
are deformed, contact among these spheres will only occur
at points, and the transport of gas can occur freely over
the small gas-liquid interfacial area that is still present.

Interestingly, Kam and Rossen3 considered a two-
dimensional problem of a gas bubble coated by solids
(“armored”) and showed that the interface between the
particles can assume zero or negative curvature. If the
curvature of the interface not covered by the particles in
the experiments of Du et al.1 is indeed zero, then the
dissolved air concentration at the interface would be the
same as that prevailing in the bulk liquid, and there would
be no tendency for the air to leave or enter the bubble. Of
course, to verify whether the interface of zero curvature
is in stable equilibrium, one must inquire whether a small
fluctuation in the system would lead to growth or
dissolution of the bubble, destroying this equilibrium. For
example, it is possible to arrange for a gas bubble to be
in equilibrium with respect to gas transport in a liquid
that contains dissolved gas, but this state of equilibrium
is unstable, as we discuss below.

For the sake of simplicity, we assume a static system
and neglect the role of hydrostatic variations of pressure
in this discussion. In an isothermal static system in
mechanical and electrochemical equilibrium, the Young-
Laplace equation can be written as

where pg is the pressure within the bubble, pl is the
pressure in the surrounding liquid, γ is the surface tension
at the gas-liquid interface, and κ is the mean curvature
of the interface, assumed constant. The term “curvature”
is commonly used to designate the quantity 2κ. Our sign
convention for curvature is such that ∇‚N ) 2κ, where N
is the unit normal to the interface pointing into the liquid.
For example, κ would be positive and equal to 1/a for a
spherical gas bubble of radius a. Now, consider a bubble
of radius a placed in a supersaturated liquid. The liquid
is at a pressure pl, but it contains a dissolved gas
concentration that corresponds to the equilibrium value
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attained across a flat interface at a pressure pl + 2γ/a.
With this specific choice of supersaturation, the dissolved
gas concentration would be the same in the liquid at the
bubble surface as that in the bulk. Hence, there would be
no tendency for transport of gas between the gas bubble
and the liquid, and one can regard this as a state of
equilibrium with respect to gas transport across the
interface. But, if the radius of the bubble decreases slightly,
the pressure inside the bubble would increase slightly,
leading to a larger dissolved gas concentration at the
interface. This change will lead to transport of gas away
from the interface, which depletes the gas in the bubble
and thereby leads to continuing decrease in bubble size.
Likewise, a slight increase in the bubble radius would
lead to a decrease in the dissolved gas concentration at
the interface, which drives transport of gas toward and
into the bubble. As a result, the bubble would grow
indefinitely. Therefore, the equilibrium state for a pure
gas bubble in a liquid is unstable to the transport of gas
across the interface.

Larsen4 has considered an arbitrary pocket of gas
surrounded by liquid and solid boundaries in equilibrium
with the liquid and obtained a condition for this equilib-
rium state to be linearly stable to small perturbations in
the gas volume using a kinetic approach. He assumes the
curvature of the gas-liquid interface to be constant and
the ideal gas law to be applicable to the gas and uses
Henry’s law to describe the relationship between the
pressure in the bubble and the dissolved gas concentration
in the liquid at the interface. Larsen4 shows that if the
volume of the gas is V and the curvature of the gas-liquid
interface is κ, the equilibrium state is stable when dV/dκ
> 0.4,5 The same condition also can be obtained indepen-
dently from the thermodynamic stability criterion given
in equation (549) of Gibbs.5 In the case of an isolated gas
bubble in equilibrium with the surrounding liquid con-
sidered in the previous paragraph, the rate of change of
gas volume with curvature is negative, and the equilibrium
state is unstable in that situation. Instead, consider a gas
pocket at equilibrium with the surrounding liquid for
which a slight increase in curvature accompanies a slight
increase in volume. If the pressure in the liquid is held
constant, from eq 1 we see that the increased curvature
will cause a slight increase in the pressure in the pocket,
leading to an increase in the dissolved gas concentration
at the interface. This will cause gas to leave the pocket,
restoring the original equilibrium. In a like manner, a
slight decrease in curvature, accompanied by a concomi-
tant decrease in gas volume, will lead to gas entering the
pocket, once again restoring equilibrium. Thus, a positive
value of dV/dκ confers stability on the gas pocket.

We prove in the present work that when a gas-liquid
interface contains particles that are partially wetted by
the liquid and is flat in its equilibrium state, this state is
linearly stable to small perturbations in the volume of the
gas, suggesting that this may be one possible reason for
the observed stability of the air bubbles in the experiments
of Du et al.1 Even though those experiments were
performed on spherical gas bubbles with significant
curvature, in the limit when the particles are small
compared with the radius of the bubble, one can envision
the gas-liquid interface in their experiments as being
approximated by the present model system. Our approach
is based on demonstrating that the rate of change of the

volume of gas with respect to curvature at the equilibrium
state is positive.

Numerical results were obtained by Hilden and Trum-
ble6 in a related problem. These authors used Surface
Evolver software and calculated the pressure required
for the penetration of a liquid into an array of identical
close-packed spheres on a hexagonal lattice as a function
of the radius of the spheres, surface tension, contact angle,
and volume. The pressure difference between the liquid
and the vapor across the interface is proportional to the
interface curvature. From the numerical results of Hilden
and Trumble,6 it is possible to infer that the derivative of
the volume of the gas with respect to the curvature as
seen from the gas side, when the curvature is zero, is
always positive regardless of the value of the contact angle.
Hilden and Trumble also present results for the case when
the spheres are slightly separated and placed on a
hexagonal lattice, and the same inference can be drawn
from those results. We prove analytically in the present
work that this is a general result, applicable to a situation
in which nonidentical spheres are placed at arbitrary
locations on a planar gas-liquid interface.

Analysis

Consider a collection of partially wetted nonidentical
spheres present at a planar gas-liquid interface so that
the contact angle R made by the liquid on their surface
lies between 0 and 180°. This contact angle can be different
for each sphere but must be a constant on the surface of
a given sphere. The system is bounded by a cylindrical
container of arbitrary cross-section, and for the purpose
of this analysis we assume the contact angle with the
container to be 90°. Later, we comment on this restriction
and how it can be relaxed. The spheres are not assumed
tobearranged inanyregularpattern,nordoesanydetailed
pattern influence the final result. We neglect hydrostatic
effects in this treatment. This is a good assumption over
small length scales in a gravitational field (i.e., distances
smaller than the capillary length) and over substantial
length scales in a reduced gravity environment, such as
that prevailing aboard orbiting spacecraft or outer space
probes. The interface will be flat in the absence of the
spheres so that the pressures in the gas and liquid will
be the same, neglecting hydrostatic effects. If the liquid
is saturated with the gas at the prevailing pressure, the
concentration of dissolved gas at the interface will be the
same as that in the bulk liquid. Thus, the system is in
equilibrium in the absence of the spheres.

When the spheres are introduced at the interface, it is
possible to find an equilibrium situation wherein the
interface is flat in the region not covered by the spheres.
Figure 1 shows rectangular Cartesian coordinates (x, y,
z) measured from an origin located at the center of a
reference sphere of radius a, with z directed normal to the
flat interface and measured toward the liquid side of the(4) Larsen, R. J.; Ph.D. Dissertation in preparation, Harvard

University, Cambridge, MA.
(5) The Scientific Papers of J. Willard Gibbs. Vol. I. Thermodynamics,

Chapter III. On the Equilibrium of Heterogeneous Substances; Long-
mans: London, 1906.

(6) Hilden, J. L.; Trumble, K. P. J. Colloid Interface Sci. 2003, 267,
463.

Figure 1. Sketch of a reference sphere at the interface, showing
the coordinate system and other symbols used in the analysis.
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interface and (x, y) measured laterally on a plane parallel
to the flat interface. Referring to Figure 1, the equilibrium
interface will be located at z ) z0 ) -a cos R, where R is
the contact angle. When R > 90°, z0 > 0, and likewise,
when R < 90°, z0 < 0. The location of the interface
everywhere will remain the same with respect to the
chosen origin, but for a sphere of a different radius and
a different contact angle, the relative location with respect
to its center will change. In general, the location of the
interface with respect to a similar rectangular Cartesian
coordinate system with the center of sphere i as the origin
will be given by z ) z0 ) -ai cos Ri where ai is the radius
of sphere i, and Ri is the contact angle. Note that purely
for convenience, we have located the gas below the liquid
in the figure. The actual orientation is irrelevant because
gravitational effects are neglected in the model.

In the following development, we scale all distances by
a reference length, which is chosen as the radius of a
reference sphere, a. Therefore the volume of the gas is
scaled by a3, and curvature is scaled by 1/a. For conven-
ience, after being mentioned at first occurrence, the prefix
“scaled” will be mostly omitted, but implied where
appropriate.

The curvature of the equilibrium interface is zero. Now,
we consider a slight perturbation in the scaled volume of
the gas V, which leads to a perturbation in the curvature
of the interface from the equilibrium value of zero
everywhere. Because the pressure is assumed spatially
uniform in both phases, this perturbation of the curvature
will be constant. We label the scaled curvature ε. The
question to be answered is whether [dV/dε]ε)0 is positive
or negative. If it is positive, then a slight increase in volume
leads to a slight positive curvature of the interface, leading
to higher dissolved gas concentration at the interface, and
efflux of gas out of the volume so that the volume returns
to its original value. Likewise, a slight decrease in volume
leads to a negative curvature and an influx of gas into the
volume. Thus, the gas volume would be linearly stable to
slight perturbations provided [dV/dε]ε)0 > 0. We now
proceed to prove this to be the case.

Let the perturbed gas-liquid interface be given by

where, because scaled variables are being used, z0 ) -cos
R. To avoid clutter in the subsequent development, the
parametric dependence on εwill not be displayed explicitly
as in eq 2. At equilibrium, the function h(x, y) must satisfy7

where

and hx stands for ∂h/∂x, with similar notation applying to
the entire equation. The perturbation in gas volume can,
in general, be accompanied by a perturbation in the
location of the contact line. At the perturbed contact line
on the surface of the sphere, the contact angle must still
be specified as R. This fact provides the boundary condition
that must be satisfied at the surface of each sphere (using
the contact angle pertaining to that sphere). At the
container wall, the contact angle is specified as 90°.

For small curvatures ε, we can expand the solution of
eq 3 as

When eq 5 is substituted into eq 4 and the result is ordered,
we obtain

so that

Substitution of eq 5 in eq 3 and use of eq 7 yields

Therefore, at leading order in ε, we obtain

where∇2 is the two-dimensional scaledLaplacianoperator.
The domain on which the function h0(x, y) and higher
order functions in the expansion envisioned in eq 5 are
defined is termed Ω. As shown in Figure 2, Ω is the portion
of the x-y plane enclosed by the container, from which
the areas of the circles corresponding to the projection on
the x-y plane of the unperturbed contact lines on the
surfaces of the spheres are excluded. The boundary of
this domain, δΩ, comprises the footprint of the container
wall, δΩC, and the circles δΩi corresponding to each of the
spheres noted above. We define a unit outward normal on
the circle corresponding to sphere i as ni. Note that ni
points into the circle by definition.

The scaled volume of the gas is given by

where the integration is carried out over the area occupied
by the domain Ω. The constant V0 in the right side of eq
10 represents the scaled baseline volume of the gas when

(7) Finn, R. Equilibrium Capillary Surfaces; Springer-Verlag: New
York, 1986.

Figure 2. The domain on which the function h(x, y) is defined
and a representative sample of its boundary.

h ) εh0(x, y) + O(ε2) (5)

A ) 1 + 1
2
ε

2(h0x
2 + h0y

2) + O(ε3) (6)

1
A3

) 1 - 3
2
ε

2(h0x
2 + h0y

2) + O(ε3) (7)

[1 - 3
2
ε

2(h0x
2 + h0y

2) + O(ε3)][ε(h0xx + h0yy) + O(ε2)] )

-ε (8)

∇2h0 ) -1 (9)

V ) V0 + ∫Ω
h(x,y) dA (10)

z ) z0 + h(x,y;ε) (2)

1
A3

[(1 + hy
2)hxx + (1 + hx

2)hyy - 2hxhyhxy] ) -ε (3)

A ) x1 + hx
2 + hy

2 (4)
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the interface is unperturbed. Substituting the expansion
from eq 5 into eq 10 yields

As noted earlier, linear stability of the interface to gas
transport across it requires that [dV/dε]ε)0 > 0. Therefore,
the condition for stability reduces to

We prove that eq 12 holds in the current problem by
invoking a two-dimensional version of Green’s theorem.8
For an arbitrary function φ(x, y) defined on the domain
Ω bounded by the curve δΩ,

where ds is a line element on δΩ, and n is the unit outward
normal to δΩ. If we substitute φ ) h0 and use eq 9, we
obtain

The first integral in the right side is always positive
because ∇h0 * 0 identically in the domain. If we can
establish that on the boundary δΩ either h0n‚∇ h0 is zero
or negative, it follows that the requirement for stability
given in eq 12 will be satisfied.

On the portion of the domain boundary corresponding
to the footprint of the container wall δΩC, the contact
angle is prescribed to be 90°. This requires the normal to
the perturbed interface to be orthogonal to the normal to
the container wall along the contact line on the container
wall. Because the normal to the container wall is parallel
to the x-y plane, it follows that the normal to the perturbed
interface must be orthogonal to that plane. If we write the
equation for the interface shape in the vicinity of the
container wall as

where C is an arbitrary constant, the normal to the
interface (pointing into the gas) can be obtained by
evaluating -∇f/|∇f|. Therefore, it can be seen that ∇ h )
0 on the contact line with the container wall, and it follows
that h0n‚∇h0 ) 0 on δΩC. Moreover, it can be shown that
h0 and n‚∇h0 are of opposite sign on the circular boundaries
δΩi corresponding to the projection of the unperturbed
contact line on each sphere. The detailed proof of this fact
for the reference sphere is somewhat laborious and is
provided in the Appendix. Thus, we conclude that the
gas-liquid interface in the present problem is linearly
stable to the transport of gas across the interface.

Concluding Remarks
In developing the proof here, we had to assume that the

system is bounded by a container wall at which the contact
angle is set at 90°. The container can be eliminated if the
system is extended to infinity, and the spheres only cover
a finite segment of the interface, because the interface
will be flat at the equivalent domain boundary δΩC. It is

likely that the result proved here can be extended to objects
other than spheres, so long as the surface curvature is
qualitatively similar. The proof given in the Appendix
hinges on the fact that a slight elevation of the contact
line from the equilibrium state will require that the surface
slope upward to preserve the contact angle boundary
condition (and likewise, a slight depression requires the
surface to slope downward). This behavior at the solid
surface happens naturally for a spherical particle for any
contact angle R such that 0 < R < 180°. Objects such as
ellipsoids, arranged with a symmetry axis normal to the
equilibrium interface, would yield the same response,
whereas hourglass-shaped objects would not.

Other directions in which this work can be extended
include the consideration of the stability of an interface
that is not flat, but has zero curvature, as is likely the
case corresponding to the experiments that motivated this
study, namely, a gas bubble covered by particles. On a
global level, a bubble can appear spherical, but if the origin
of the stability of the bubble is correctly represented by
the present analysis, the interface would be deformed by
the particles such that the curvature is zero everywhere.
Of course, it would require a minimum number of particles
of a certain size on a given bubble surface to produce this
condition; the establishment of this number for a specified
particle-to-bubble size ratio should be a useful exercise in
itself.

Acknowledgment. R. J. Larsen and H. A. Stone thank
Unilever Research for support of this research. R. S.
Subramanian expresses his gratitude to the Division of
Engineering and Applied Sciences at Harvard University
for the hospitality extended to him during his sabbatical
leave.

Appendix

The objective of this Appendix is to show that the signs
of h0 and n‚∇h0 are opposite on every circular boundary
δΩi corresponding to the projection onto the x-y plane of
the unperturbed contact line on the surface of sphere i.
The analysis uses a reference sphere of radius a with
contact angle R, for convenience, and the rectangular
Cartesian coordinate system identified in Figure 1. Scaled
variables are used, as indicated in the main body of this
work.

In Figure 3a, the equilibrium contact line and a
perturbed contact line on the reference sphere are
displayed. The corresponding projections of these two
contact lines are shown in Figure 3b, along with some
symbols that are used in the analysis in this Appendix.

(8) Hildebrand, F. B. Advanced Calculus for Applications; Prentice
Hall: Englewood Cliffs, NJ, 1976.

V ) V0 + ε ∫Ω
h0(x,y) dA + O(ε2) (11)

∫Ω
h0(x,y) dA > 0 (12)

∫Ω
[φ∇2

φ + (∇φ)‚(∇φ)] dA ) I
δΩ

φn‚∇φ ds (13)

∫Ω
h0(x,y) dx dy )

∫Ω
[(∇h0)‚(∇h0)] dA - I

δΩ
h0n‚∇h0 ds (14)

f(x,y,z) ) z - C - h(x,y) ) 0 (15)

Figure 3. The equilibrium (solid) and perturbed (dashed)
contact lines on the surface of the reference sphere; (a) front
view, (b) projection on the x-y plane showing the curves C0 and
C1, the normal n to C0, and the radial distances r and ∆r used
in the analysis in the Appendix; an arbitrary perturbation is
chosen for illustration.
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Because the perturbation in the position of the contact
line is permitted to be arbitrary, albeit small, we must-
establish the location of the perturbed contact line by
satisfying the equations for the surface of the sphere and
the perturbed gas-liquid interface simultaneously. The
contact angle is the angle between the normals to these
two surfaces (chosen in suitable directions) at the contact
line, which comprises the loci of the points of intersection.
The projection of the perturbed contact line onto the x-y
plane is the boundary of the perturbed domain, which
will depend on ε. The baseline boundary that corresponds
to a flat interface is a circle of scaled radius sin R, where
R is the contact angle. It is on this circular boundary that
the relationship between the signs of h0 and n‚∇h0 needs
to be established when using eq 14 to prove stability.

We can write the equation for the surface of the sphere,
using scaled coordinates, as

The unit outward normal to this surface n1 is given by
∇f1/|∇f1| and can be shown to be the scaled position vector.

In eq A2, (i, j, k) represent the usual triad of orthogonal
unit vectors in the coordinate directions (x, y, z). The gas-
liquid interface can be described by

Here z0 ) -cos R is the initial scaled height of the flat
gas-liquid interface in the base state. Acute contact angles
imply a base state below the origin, and obtuse contact
angles lead to a base state above the origin.

We can find the unit normal to the gas-liquid interface
n2 pointing into the gas by determining ∇f2/|∇f2| and
inverting the sign.

The orientations of n1 and n2 have been chosen such that
n1‚n2 ) cos R, which leads to the following relationship
at the intersection of the two surfaces.

Substituting for z from eq A3 and expanding the right
side using the fact that (hx

2 + hy
2) , 1 leads to

along the contact line.
Because eqs A1 and A3 must both be satisfied at the

contact line, we can eliminate z between them to write

a relationship that applies to the (x, y) coordinates of every
point on the contact line; because z has been eliminated,
it is also the projection of the perturbed contact line onto
the x-y plane. The function h(x, y) appearing in eq A7

must be evaluated at this projected boundary. This curve
is labeled C1 in Figure 3b. The circular boundary of the
unperturbed domain, assigned the label C0 in Figure 3b,
is given by

The outward normal to curve C0 (as seen from the domain
Ω) is

The next task is to use eq A6, which is obtained from
the contact angle boundary condition at the perturbed
contact line, to obtain the desired result on the circle C0.
To do this, we shall write Taylor series expansions of
functions about points on the circle C0. Each point on this
circle is mapped into a corresponding point on the
boundary curve C1 by a radial line drawn from the origin
on the x-y plane. The scaled radial distance from the
origin to any point on the circle C0 is r ) sin R. Let the
distance between the two curves along this radial line be
∆r so that the scaled radial distance from the origin to a
point on C1 is r + ∆r. On C1,

when use is made of eq A7. This quadratic equation for
∆r can be solved to obtain two solutions, only one of which
is admissible. It is

The right side of eq A11 can be expanded by making use
of the fact that h , 1. This yields the following result.

As noted earlier, the function h(x, y) in the result for ∆r
must be evaluated on C1.

Equation A6 applies on C1, and we must now transform
it to apply to functions evaluated on C0. Expanding the
function h(x, y) in a Taylor series about a point on C0, the
value at the corresponding point on C1 on a radial line
drawn from the origin is given by

Upon working this out, we obtain

where higher order terms are not explicitly displayed,
because they are not needed.

In a like manner, the following result can be written.

Using the results from eqs A14 and A15 in eq A6, we
obtain

f1(x,y,z) ) x2 + y2 + z2 - 1 ) 0 (A1)

n1 ) ix + jy + kz (A2)

f2(x,y,z) ) z - z0 - h(x,y) ) 0 (A3)

n2 ) 1

x1 + hx
2 + hy

2
(ihx + jhy - k) (A4)

xhx + yhy - z ) cos Rx1 + hx
2 + hy

2 (A5)

xhx + yhy - h ) cos R
2 [hx

2 + hy
2 - 1

4
(hx

2 + hy
2)2 + ...]

(A6)

x2 + y2 - sin2 R - 2h cos R + h2 ) 0 (A7)

x2 + y2 - sin2 R ) 0 (A8)

n ) - 1
sin R

(ix + jy) (A9)

x2 + y2 ) (sin R + ∆r)2 ) sin2 R + 2h cos R - h2 (A10)

∆r ) sin R(-1 + x1 + 2h cos R
sin2 R) (A11)

∆r ) h cot R - h2

4
cos2 R
sin3 R

+ ... (A12)

[h]C1
) [h]C0

- ∆r[∇h]C0
‚n + ... (A13)

[h]C1
) [h]C0

+ [h]C1

cos R
sin2 R

[xhx + yhy]C0
+ ... (A14)

[xhx + yhy]C1
) [xhx + yhy]C0

+ [h]C1

cos R
sin2 R

[xhx +

yhy + x2hxx + y2hyy + 2xyhxy]C0
+ ... (A15)
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Now, substitute the expansion for h(x, y) given in eq 5 to
obtain

Therefore, in the limit as ε f 0, eq A17 reduces to

From eq A9,

Hence, we find that

Because sin R > 0 for 0 < R < 180°, the desired result is
proved.

LA046927K

[n‚∇h0]C0
) - 1

sin R
[xh0x + yh0y]C0

(A19)

n‚[∇h0]C0
) - 1

sin R
[h0]C0

(A20)

[xhx + yhy - h]C0
) -[h]C1

cos R
sin2 R

[x2hxx + y2hyy +

2xyhxy]C0
+ cos R

2 [hx
2 + hy

2 - 1
4

(hx
2 + hy

2)2 + ...]C1

+

... (A16)

ε[xh0x + yh0y - h0]C0
) O(ε2) (A17)

[xh0x + yh0y - h0]C0
) 0 (A18)
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