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Asymptotic expansions are used in analysis to describe the behavior of a function in a limiting 
situation.  When a function ( ),y x ε  depends on a small parameter ε , and the solution of the 
governing equation for this function is known when 0ε = , a perturbation method may prove 
useful in obtaining a solution for small values of ε .  Such an approach is particularly attractive 
when the governing equation is nonlinear and no general techniques are available for exact 
solution.  If ε  appears as a multiplicative factor in a term in the governing equation, the standard 
approach is to try a power series solution of the following form:   
  
 ( ) ( ) ( ) ( )2

0 1 2, ...y x y x y x y xε ε ε= + + +  (1) 
 
where the symbol … stands for higher order terms.  The series is inserted into the governing 
equation and boundary conditions, and coefficients of like powers of ε  are then grouped to 
obtain a series of equations for the coefficient functions ( )jy x , which are then solved in a 
sequential manner.  The resulting series need not converge for any value of ε ; nevertheless, the 
solution can be useful in approximating the function ( ),y x ε  when ε  is small. 
 
Convergent and Asymptotic Series 
 

Computationally, a convergent series 
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concept relating to the behavior of the terms in the series at the tail end, that is, as j →∞ . That a 
series converges says nothing about how rapidly the terms will decrease in magnitude.  On the 
other hand, in an asymptotic series, the terms will usually decrease rapidly with j  at first for 
sufficiently small ε .  Sometimes, they may begin to increase with increasing j  at some point 
after decreasing initially.  When the terms are decreasing rapidly, if we sum just the first few 
terms and we know that the error incurred is of the order of the next term, we can get a good 
estimate of the sum.  This is why asymptotic series, even when divergent, are practically useful.  
The main problem with asymptotic series is that one never knows how accurate the answer is.  
The results must be validated by comparison with some other representation of the expected 
answer.  Nevertheless, asymptotic series may be the only means of obtaining an analytical 
solution of a difficult problem, and are used commonly for this purpose. 
 
To illustrate the ideas regarding computational utility, write a computer program to sum the first 
100 terms in the Taylor series for sinθ  given below, first for θ  = 0.5, and then for θ  = 104.   
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The series is known to be uniformly convergent for all values of θ .  The result for 410θ =  
reflects the fact that the precision of machine computation is finite.  Errors introduced by the 
limited precision lead to an absurd result when the sum is calculated. You can see a 
demonstration of this by printing each term and the sum as successive terms are added. 
 
Now, consider the following series for the complementary error function. 
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This series diverges for all values of x .  It is an asymptotic series that represents the function in 
the limit as x →∞ .  In spite of its divergence, it is useful for computing the complementary error 
function for large values of x , because the terms in the series decrease rapidly with increasing n  
for small values of n  and the error incurred by truncating the series at a certain term is of the 
order of magnitude of the next term, which is much smaller than the term retained as long as x  is 
large and we use only a small number of terms.  Try calculating results from this series for x = 5, 
10, and 20 and check the sum after adding each term against the exact result.  Also, see if you 
can demonstrate to yourself that this is a divergent series. 
 
Some Basic Concepts 
 
Some basic concepts in using asymptotic series are described next.  Two symbols are commonly 
used to describe the behavior of a function ( )f ε  in the limit as 0ε → .   They are " "O  and 
" "o and are  termed big “oh” and little “oh.”  If we have two different functions of ε , namely 
( )f ε  and ( )g ε , we say that 
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In words, this is stated as follows: ( )f ε  is of the order of ( )g ε .   
 
If the limit is zero, then the symbol o  is used. 
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In the above, the function ( )g ε  is termed a “gauge function.”  A common set of gauge functions 

is the set of powers of epsilon ( )21, , ,...ε ε .  These powers are often used to describe the behavior 
of some other function of epsilon.  For example, we may write 
  
 sinε ε  (6) 
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which should be read as “sine epsilon is asymptotically equal to epsilon.”  Even though the 
phrase “as ε  approaches zero” is omitted, it is implied.  Of course,  
  
 tan ε ε  (7) 
 
at leading order, so that we see that different functions can have identical asymptotic 
representations. 
 
Power series are just one type of asymptotic series.  A more general asymptotic series for a 
function ( ),y x ε  is of the form 
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Note that we have terminated the series at a finite value of the index.  Therefore, convergence is 
not an issue here.  The functions ( )nf ε  must satisfy 
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This means that each member of the set of functions approaches zero more rapidly than the 
previous member as 0ε → .  We call the set of functions ( ){ }nf ε  an asymptotic sequence if the 
members satisfy the condition given in Equation (9).  Note that the set of powers of epsilon is 
indeed an asymptotic sequence. 
 
The coefficient functions ( )ny x  can be determined uniquely from the property of the members 

of an asymptotic sequence noted above.  First, by dividing both sides of Equation (8) by ( )0f ε  
and taking the limit as 0ε → , we obtain the following result for the leading order coefficient 

( )0y x . 
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Now, subtract ( ) ( )0 0f y xε  from both sides of Equation (8), divide by ( )1f ε , and take the limit 
as 0ε → .  This yields 
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Using this procedure, it is straightforward to show that the coefficient function ( )jy x  in the 
asymptotic series can be written as  
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The coefficients in the asymptotic series for a given function depend on the choice of the 
sequence; once the sequence is defined, the coefficients are uniquely determined by Equations 
(10) and (12).  In a given problem, we usually do not know the dependence of ( ),y x ε  on ε  so 
that the results in these equations should be regarded only as formal definitions of the coefficient 
functions.  Next, we demonstrate how these coefficients are determined in example cases. 
 
 
An Integral 
 
Consider the integral ( )I ε  defined as shown below. 

 ( )
0 1

teI dt
t

ε
ε

∞ −

=
+∫  (13) 

Proceeding to integrate by parts, we obtain 
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Continuing to integrate by parts in this manner, we can show that 
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As an infinite series,  
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is divergent for all values of ε .  But, for relatively small values of ε , the series in Equation (16), 
truncated after a small number of terms, provides a good approximation of the integral. 
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A Differential Equation 
 
Consider the differential equation 
 
 0y yε′ + =  (17) 
along with the initial condition 
 ( )0 1y =  (18) 
 
We know that the solution is  
 xy e ε−=  (19) 
 
Let us see how an asymptotic expansion can be developed for ( ),y x ε .  Write 
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Substitute this expansion into the governing equation (17), yielding 
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Rearrange this equation  to write it as 
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with the convention that 1 0y− = .  We can see that by taking the limit 0ε → , we obtain 
 0 0y′ =  (23) 
and by subtracting this result from Equation (22), dividing both sides by ε , and taking the limit 

0ε →  again, we get 
 1 0y y′ = −  (24) 
Repeating the process as many times as needed leads to 
 
 1, 0,1, 2,...k ky y k−′ = − =  (25) 
 
We could also have written Equation (25) by formally setting the coefficient of kε  to zero in 
Equation (22) for each value of k . 
 
By inserting the asymptotic expansion given in Equation (20) into the initial condition, we obtain  
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which yields 
 ( ) 00k ky δ=  (27) 
 
where 1ijδ = when i j=  and 0 otherwise.  It is known as the Kronecker delta. 
 
The solution of 0 0y′ =  along with ( )0 0 1y =  is 0 1y = .  Using this, we can solve  
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the equation for 1y , which is 1 0 1y y′ = − = − , along with ( )1 0 0y =  to yield 1y x= − .  By 

continuing the process, we find ( ) 2
2 / 2!y x x= , 3

3 / 3!y x= − , and so on.  The solution for 

( ),y x ε  can be written as 
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which is the Taylor series for the exponential function e xy ε−= .  This series happens to converge 
uniformly for all values of ε  and x .  In this example, our attempt to find a power series 
expansion in ε  has led to a convergent series, even though we cannot expect the same in other 
problems. 
 
Concluding Remarks 
 
We have seen how a useful approximation to the solution of problems involving a small 
parameter can be obtained by expanding in an asymptotic series in that parameter.  This method 
is known as “perturbation.”   It can be shown that the simple technique illustrated here fails if the 
small parameter multiplies the highest order derivative in a differential equation.  This is because 
the order of the differential equation is reduced when the small parameter is set equal to zero.  
This leads to qualitative differences in the solution, and in boundary value problems, the inability 
to satisfy the complete set of boundary conditions on the problem. Also, a simple perturbation 
method can fail even when the small parameter only multiplies a low order derivative if the 
domain is unbounded, as can occur in idealized mathematical problems.  These problems are 
handled by using “singular perturbation” techniques.  You can learn more about perturbation 
methods from any of the following references. 
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