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The details of the solution of Stokes’s Equation for the streamfunction 

4 0E ψ =  in spherical polar coordinates ( ), ,r θ φ by the method of separation 
of variables are given in the book “Low Reynolds Number Hydrodynamics” 
by J. Happel and H. Brenner.  The solution is obtained as the sum 

( ) ( ) ( ) ( )1 2, ,r rψ θ ψ θ+  where ( )1ψ  satisfies 

 ( )12 0E ψ =  (1) 

and ( )2ψ  is the particular solution of  
  
 ( ) ( )2 12E ψ ψ=  (2) 
 
The solution, in the form of infinite series, is specialized to typical problems 
in the spherical geometry in a domain that includes at least a portion of the 
symmetry axis by requiring that the velocity field be bounded along that axis, 
which corresponds to 0,θ π= .  The result is given below. 
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Here, cosη θ= , and ( )1/2
n η−C are the Gegenbauer Polynomials of order n  

and degree 1/ 2− .  Their properties are discussed in Sampson (1891), and in 
Abramowitz and Stegun (1965).  The Gegenbauer Polynomials are solutions 
of the second order ordinary differential equation 
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where n  is an integer.  The second linearly independent solution of this 
equation is a function that becomes unbounded along the symmetry axis.  The 
Gegenbauer Polynomials are closely related to the Legendre Polynomials 

( )nP η , which satisfy Legendre’s equation. 
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Many important properties of the Legendre Polynomials can be found in 
MacRobert (1967) and in Abramowitz and Stegun (1965). 
 
Some useful relationships involving the Gegenbauer Polynomials are given 
below. 
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The first few Gegenbauer and Legendre Polynomials are  
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The Gegenbauer Polynomials satisfy the orthogonality property 
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for values of  , 2.m n ≥  
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The function ( )nQ η  used by Leal in the textbook is related to the Gegenbauer 

Polynomials through ( ) ( )1/2
1n nQ η η−
+= −C . 
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