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OBJECTIVES

After completion of this module, the student
should be able to describe and discuss the effects
of convective transport and diffusive transport
on the axial dispersion of solute in a conduit.

PREREQUISITE MATHEMATICAL SKILLS

1. Elementary calculus and differential equations.

2. An introduction to partial differential equa-
tions, such as the diffusion equation. Pre-
vious exposure to the equation of conserva-
tion of mass would be helpful.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Elementary modeling of transport problems,
especially elementary concepts of convective
and diffusive transport.

INTRODUCTION

Miscible dispersion refers to the mixing phenomena
which occur when two miscible fluids are brought to-
gether either when stationary or when they are in motion.
This definition is very broad, and it is not possible to do
justice to the wide range of topics it covers in one mod-
ule. So, attention will be confined here to the phenome-
non of dispersion which takes place when a solute is in-
troduced into fluid flowing in a conduit. Specifically, no
attempt will be made to treat mixing in agitated vessels,
which also would be called ‘‘dispersion.’’

While dispersion phenomena are fascinating to study
just from the point of view of scientific interest, there are
practical reasons for developing a good understanding of
such phenomena. Some applications are:

1. The distribution of tracers and drugs in the blood-
stream.

Conventional chromatography.

Field flow fractionation or polarization chromatogra-
phy. .

The transient behavior of tubular reactors.

Pollutant transport in the atmosphere.

Material and thermal pollution of natural streams.
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The list is by no means complete. New applications
will, doubtless, be found in the future. Serious study of
the subject was begun only about thirty years ago by G.
I. Taylor in a classic paper (52), and new developments
are being made even today.

In each of these examples, it might be seen that disper-
sion or mixing occurs due to two basic mechanisms.
These are:

1. convective or bulk transport
2. diffusive or molecular transport

Simplistic as this might sound, the interactions between
these two mechanisms lead to some very interesting con-
sequences. Before proceeding further, it is important to
distinguish between two basically different types of dis-
persion problems which emerge from the various applica-
tions.

In the first category, called ‘‘initial distribution prob-
lems,’’ a certain finite amount of solute is introduced into
a flow and permitted to disperse. There can be no non-
trivial steady state in such a situation, and all phenomena
of interest are transient. Elution chromatography is a
good example of this problem. In generalized dispersion
theory, such problems are handled by using an infinite
series solution which satisfies the appropriate initial and
boundary conditions. This series will be displayed later
in this module.

A second category of dispersion problems is character-
ized by the example of a chimney emitting pollutant con-
tinuously into the atmosphere or a chemical plant dis-
charging effluent continuously into a nearby stream. In
such problems, one might imagine the fluid medium (at-
mosphere or river) to be initially devoid of solute. At
time zero, the appropriate source of solute is turned on at
the inlet. This type of problem may be termed an ‘‘inlet
distribution problem.’’ If the discharge rate is steady, a
non-trivial steady state can be established at locations
close to the system inlet after a while. This steady state
will propagate down the flow as time goes on, carrying
in front of it a transient region. One approach for han-
dling this class of problems is to treat the continuous
source as a series of pulses, each one of which can be
handled using techniques suitable for initial distribution
problems. This method is known as superposition (/3)
and its application to inlet distribution problems has been
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discussed by Gill and Sankarasubramanian* (25, 47), and
Gill (26), and clarified by Subramanian (57). More re-
cently, Smith (43-46) has used superposition innovatively
to construct solutions to both classes of problems using
his ‘‘delay-dispersion model.”’

In the rest of this module, attention is focused on *‘ini-
tial distribution problems’’ because of their relative sim-
plicity.

THE PHYSICAL PROBLEM

The dispersion of a solute introduced into a fluid flow-
ing into a conduit will be considered here. It is conven-
ient to approach the complex problem in which a solute
is dispersed due to the simultaneous action of convection
and diffusion in the presence of a non-uniformly distrib-
uted velocity field, say in a circular tube, via simple, ide-
alized, intermediate physical situations. These might be
called ‘‘thought experiments.”’

Consider a slug of dilute solution, x; units long and
having a uniform concentration C, of a suitable solute
held in an infinitely long circular tube as shown in Figure
1. This slug is separated from pure solvent on either side
of it by suitable impermeable barriers. The axial coordi-
nate x and the radial coordinate r are defined as shown in
the figure. All the thought experiments will be performed
on this system.

Experiment 1

At time zero, imagine the barriers on either side of the
slug are removed without causing any disturbance in the
fluid (this is very hard to do in practice, but easy to
imagine). No pressure gradient is imposed on the fluid so
that it remains completely stationary.

The solute will be observed to diffuse symmetrically
on cither side of the original slug. The velocity resulting
from this diffusion is ignored by assuming the slug to be
very dilute. There is no radial or angular variation of
concentration in the system, since the slug is assumed to
be initially uniform in concentration everywhere. This
diffusion process can be described mathematically by the
one-dimensional conservation equation for the local so-
lute concentration, C(¢, x). For a derivation of the con-
servation equation, see Bird, et al (6).

aC 92C
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Here, ¢ is time, and D is the molecular diffusivity of the
solute in the fluid. The initial and boundary conditions on
C (¢, x) for the system are:

1
C(0, x)=C,, |x| 55 X,

1 )
=0, |x|>=x
2

*R. Shankar Subramanian was formerly known as R. Sankarasubrama-
nian.
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Figure 1. The system.

C(t, £)=0, t=0 3)

Equation 2 states that initially, the solute concentration
is C, everywhere inside the slug and zero everywhere
else. Equation 3 is characteristic of problems of this
type, and indicates that solute never reaches axial stations
infinitely far away from x = 0. The solution of Equa-
tions 1 to 3 for C(¢, x) is well-known and is given in
Crank (/4). Figure 2 shows the concentration distribution
from this solution as a function of axial position for vari-
ous values of time. In this simple thought experiment,
there is no bulk (convective) transport. Figure 2 shows
that symmetric axial spreading or dispersion of solute oc-
curs due to molecular diffusion.

Experiment 2

Just as was done in the first experiment, imagine the
barriers on either side of the slug are removed at time
zero without causing any disturbance. However, this
time, an axial pressure gradient is imposed on the fluid.
This will result in bulk motion. This motion is assumed
to be described by an idealized plug flow velocity pro-
file. That is,

vy, =constant =v,, )

Here, v,, is the cross-sectional average velocity defined
by

R
SO v dar 5 &

—=—\ v dr 3
R R2 Jo
SO r dr

Up=

c/c,

AXIAL COORDINATE ,x

Figure 2. Concentration versus axial coordinate for the diffusion
of a slug.
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Since v, is independent of position in this thought experi-
ment, v,, = v,. The fluid, and hence the solute, is mov-
ing with a constant velocity v,, everywhere. So, an ob-
server who starts at time zero at x = 0, and runs along
with the slug (moves axially at the same velocity v,,),
should be able to ‘‘freeze’’ the motion of the solute.
Then, the only transport seen by this observer would be
molecular diffusion. That is, in a coordinate system

(¢, x1) where

X =X— vyt 6)

C(¢, x;) would satisfy a simple diffusion equation. For
this thought experiment, the concentration profiles would
be identical to those in Figure 2 if the abcissa is changed
from x to xj.

The lesson to be learned from this thought experiment
is that a uniform velocity field has no effect on axial
spreading. The only role such bulk motion plays is to
physically translate the solute stug with a velocity v,,
down the tube. The center of the solute distribution is
always located at x = vt or x; = 0. Solute spreads
symmetrically about this center by molecular diffusion
only. For completeness, the partial differential equation
satisfied by the solute concentration in the (¢, x;) system
is:

acC a2c )

at ax?

Note that Equation 7 is identical to the diffusion equation

for C in the first thought experiment except for the fact
that x, is measured from an origin moving at a speed v,,.

Experiment 3

This experiment is similar to Experiment 2, but the
system is made more realistic by assuming laminar flow
to exist instead of the idealized plug flow. That is, at
time zero, the barriers are removed, and a pressure gra-
dient is applied which causes steady, fully developed
laminar flow in the tube. From the solution of the mo-
mentum conservation and total mass conservation equa-
tions for this system (6), it is known that the velocity is
distributed non-uniformly across the cross-section of the
tube in the shape of a parabola. That is,

72
ve(r) =2v,, < 1- F) )

where r is the radial coordinate and R is the tube radius.
v, still represents the average velocity as can be verified
from Equations 5 and 8.

From Equation 8, it may be observed that the velocity
has a maximum value of v, = 2uv,, at the tube center,
and is zero at the tube wall. Clearly, it is impossible for
an observer to ‘‘freeze’’ this motion by running along at
any particular velocity as was done in the earlier thought
experiment. The effect of the r-dependent velocity field
is to cause radial concentration gradients in the tube even
though the slug is initially radially uniform in concentra-
tion. Figure 3 shows the initial slug, and the condition of
the slug after a small amount of time has elapsed.
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Figure 3. Axial spreading of the solute due to convection.

The front end of the slug starts out at time zero as a
flat circular surface. However, due to the action of the
parabolic velocity field, this surface becomes parabo-
loidal in shape. Similarly, the rear end of the slug be-
comes another paraboloidal surface. Ignoring diffusion
for the time being, all the solute is located in the region
between these two surfaces.

It might be noted immediately that the solute has been
axially spread out just by the convection process. That is,
the axial region occupied by the solute has been in-
creased by the effect of the non-uniform velocity field. In
fact, if there were no diffusional effects, this spreading
process would go on distributing the solute over increas-
ingly larger axial extents. Thus, axial dispersion is en-
hanced by the convective transport process in this exam-
ple.

The role of diffusion in this problem is interesting and
counterintuitive. One normally thinks of diffusion as a
spreading mechanism. Yet, as will be seen shortly, the
principal role of diffusion here is to inhibit the spreading
induced by the convective transport process.

In Figure 3, the diffusive movement of solute will be
normal to the surfaces which separate solute from the re-
gion devoid of solute. This diffusive flux may conven-
iently be broken up into an axial component (in the x-
direction) and a transverse component (in the
r-direction). The effects of these diffusive fluxes on the
axial spreading of solute is opposite. Axial diffusion, as
noted in the earlier examples, contributes to axial spread-
ing. However, transverse diffusion inhibits axial spread-
ing. Figure 4 illustrates why.

Shown in Figure 4 are the directions of radial solute
transport due to diffusion. All over the front end of the
distribution, radial diffusion moves solute from the faster
central region to the slower region near the wall. Thus,
the front end of the distribution cannot move ahead as
rapidly as it would if there was no diffusion. At the rear

Figure 4. The role of transverse diffusion.
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end, solute diffuses from the wall region to the central
region, thereby helping the rear end catch up with the
front. Therefore, the effect of radial diffusion is to keep
the distribution compact in the axial direction, that is, to
inhibit axial dispersion.

Another way of looking at this effect is to recognize
that transverse diffusion ultimately permits all the solute
molecules to sample all the velocities across the cross-
section equally. Thus, the effects of the non-uniform ve-
locity field in spreading the solute axially are countered
by the effect of transverse diffusion which tends to equal-
ize the average axial velocities of the solute molecules in
the long run.

Interestingly, depending on the initial solute distribu-
tion, transverse diffusion may actually aid axial disper-
sion in the initial stages in certain situations (24). How-
ever, given time scales on the order of the diffusion time
across the tube (~R2/D), the effect of transverse diffu-
sion is to inhibit axial spreading.

In summary, the third experiment performed under
laminar flow conditions shows that convective transport
in the form of a non-uniform velocity field tends to en-
hance axial dispersion; axial diffusion aids such axial dis-
persion, and transverse diffusion inhibits axial dispersion.

Unlike its predecessor, Experiment 3 can actually be
set up in a laboratory. The results are fascinating when
one does so. Near the beginning of this century, Griffiths
(27) performed studies of the dispersion of a drop of flu-
orescent solution in a stream of water in laminar flow
through a cylindrical capillary. He found experimentally
that the dye spreads out symmetrically about a plane
which moves with the average flow velocity of the wa-
ter in the tube. This is a surprising observation since the
velocity profile is asymmetric about the streamline in
which the velocity is equal to the average velocity of
flow. It was left to G. I. Taylor (52) to perform addi-
tional experiments and explain what Griffiths saw by
means of a series of intuitive arguments. In view of the
limited space available here, it is not possible to do jus-
tice to Taylor’s work on this subject. However, the inter-
ested reader may consult his paper for such details. One
should first recognize that when the dye concentration in
a tube is visually examined, the observed average con-
centration is a cross-sectional average C,,. This is defined
as:

R

§ Cc@, x, ryr dr
Cnlt, x)="—un
S rdr

0

2 R
=F§ Cr dr ©)

0

Recalling the second thought experiment, if an ob-
server runs along with the mean velocity of flow v,, in
Griffiths’ experiments, according to Griffiths, the ob-
server would see what appears to be a diffusive process
as far as the average concentration is concerned. That is,

ac, . 9°C,
=k

— 10
at ox3 (10)

where x; is defined in Equation 6. Note that the symbol
k is used to describe this ‘‘apparent diffusivity’’ of C,,. k
cannot be simply equal to the molecular diffusivity D
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since the axial spreading of solute in Griffiths’ experi-
ments is due to the complex interaction between convec-
tive and diffusive transport, and not due to simple molec-
ular diffusion. In fact, it is worth noting that the
“‘apparent diffusivity’’ is typically several orders of mag-
nitude larger than molecular diffusivity.

Taylor (52) performed some experiments of his own,
as mentioned earlier (using potassium permanganate as
the solute and water as the solvent) and confirmed Grif-
fiths’ observations. He also developed an approximate
theory of the process (ignoring axial diffusion) which led
to Equation 10 with the following result for the *‘disper-
sion coefficient’” or the ‘‘apparent diffusivity,”’ k.

2
R%;,

" 48D an

Taylor’s theoretical result is in agreement with the
qualitative arguments presented in the earlier discussion
of Experiment 3. The dispersion coefficient, k, which
represents the axial spreading of solute in the capillary, is
directly proportional to the square of the average veloc-
ity. The larger the average velocity, the greater will be
the absolute velocity variations across the capillary, and
therefore, the greater will be the axial spreading due to
the velocity profile effect (convective spreading). Fur-
thermore, the dispersion coefficient is inversely propor-
tional to the molecular diffusivity D. This also is in
agreement with the reasoning presented earlier which in-
dicated that transverse diffusion should inhibit axial
spreading.

Taylor’s description of the dispersion process is valid
only after a sufficient amount of time has elapsed since
the introduction of solute into the capillary. This time
scale is on the order of the diffusion time across the cap-
illary R?/D. Of course, several interesting transient phe-
nomena take place before this time scale is reached in
reacting systems. Also, in short conduits, the solute will
leave the conduit before this time scale is reached. A
generalized theory which accounts for solute behavior
from time zero was developed by Gill and Sankarasubra-
manian (23, 24), who showed that the result for the dis-
persion coefficient derived by Taylor and displayed
above is asymptotically valid for times ¢t 0.5 R%/D.

Taylor’s result, given in Equation 11, is based on the
assumption that axial molecular diffusion can be ne-
glected. Aris (/) using a different technique (the method
of moments), showed that the effect of axial molecular
diffusion on the Taylor dispersion coefficient is additive.
That is,

2
R%;,

k=D+
48D

(12)

when one includes axial diffusion in the theory. Interest-
ingly, the theory of Aris is indeed valid for all values of
time since the introduction of the solute. However, em-
phasis in his work was directed at obtaining large time
asymptotes consistent with Taylor’s observations.

Equation 12 is known widely as the Taylor-Aris result
for the dispersion coefficient in a tube.

American Institute of Chemical Engineers
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ELEMENTS OF DISPERSION THEORY

The transport of solute in Griffiths’s and Taylor’s ex-
periments may be described under suitable assumptions
by the following mass conservation equation.

aC aC 14 aC a3C
—+u(ry —=D|-—r—+—
ax ror or ox?

o (13)

For an initial slug of solute of uniform concentration
C,, the following initial and boundary conditions may be
written for the solute concentration C(¢, x, r).

1
Cc@©, x, n=0_C,, lxlsi Xs

1 (14)

=0, [x]>= x;

2
C(t, £, r)=0 (15)
C(t, x, 0)=finite (16)
% o a7
ar r=R_

Equations 14 and 15 are familiar ones. Equation 16 indi-
cates that the concentrations in the system are finite, and
Equation 17 results from the fact that the tube wall is im-
permeable to the solute. Even though Equations 13
through 17 present a formidable problem to tackle analyt-
ically, several methods of solution are available. One
may use any one of these methods to compute C(¢, x, ),
and from this, any desired average, such as the cross-sec-
tional average C,(t, x) or the cup-mixing or bulk aver-
age Cy(t, x). However, a certain class of solution tech-
niques permits the user to derive equations for the
average concentration distribution with coefficients which
may be calculated from first principles without ever com-
puting the local concentration field. In the rest of this
section, an elementary version of this method is pre-
sented, and some generalizations are pointed out. For an
introduction to other approaches, the reader may consult
some of the literature cited in the bibliography. Examples
include the papers of Barton (2-4) Lighthill (33),
Chatwin (7-12), Tseng and Besant (55, 56), Fife and Ni-
choles (21), and Yu (58).

Taylor’s work (52) is an example where Equation 10
for C,,(¢, x) and Equation 11 for k£ permit the user to
predict the cross-sectional average concentration field
from theory without ever calculating C(¢, x, r). His ap-
proach was based on intuition. He recognized that for
large values of time, the difference between the local
concentration C and the cross-sectional average concen-
tration C,, must be small. He also recognized that these
small radial variations in C are crucial in accounting for
axial dispersion, and attempted to describe them by writ-
ing, in effect,

aC,,
C-Cp=g(r) — (18)
ox
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Using Equation 18, one may determine g(r) and then
go on to derive the dispersion model, Equation 10 with k
given by Equation 11. Equation 18 is based on the as-
sumption that the higher axial derivatives of C, are
smaller than the first.

Later, in (54), Taylor added a correction term.

3:C,,
ax?

aC,
Czcm‘*'gl(r)a—'*gz(") 19)

This has subsequently been developed into an infinite se-
ries by Gill and Sankarasubramanian (22-24) in ‘‘gener-
alized dispersion theory.”” (See Appendix.)

i akc,,
C= t, r)y—— 20
kE=0; &, n P (20)

An important difference between Equations 19 and 20, in
addition to the infinite series generalization, is the intro-
duction of time dependence in the functions gi. Taylor’s
theory applied only for large values of time because the
initial condition cannot be satisfied even with an infinite
series generalization of Equation 19. As pointed out ear-
lier, in several problems, the phenomena of interest occur
before such values of time are reached. The functions
g, r) are time dependent precisely for accounting for
such phenomena.

Another interesting feature to note is that in Equation
20, g, can in general depend on time and radial position.
In contrast, g, = 1 in Taylor’s work. The more general
g, is important in several practical problems where the
initial solute distribution is non-uniform in r [as when a
syringe and needle are used to inject a slug into a larger
diameter capillary (24)]. Also, in cases where there is
mass transfer at the tube wall, say due to a chemical re-
action, g, reaches steady but radially non-uniform asymp-
totic representations at large values of time (42). This is
also the case when there is transverse flow, as shown in
Doshi, et al (19), or when the solute migrates in a trans-
verse field (31, 40).

For actual details of the development of generalized
dispersion theory and its applications, the reader may re-
fer to the series of papers by Gill and Subramanian listed
in the bibliography. It may be mentioned here that, in
general, Equation 20 leads to the following result:

@1

Equation 21 is a generalization of Taylor’s result given
in Equation 10, and is, in fact, a consequence of using
Equation 20 for C instead of the approximation implied
in Equation 18. The coefficients k;(¢) in the generalized
dispersion equation can be calculated from first principles
fairly easily when k, = 0, which is the case when the
solute flux is zero at the tube wall. More complex cases
involving reactions at the tube wall, and situations where
other transverse average concentrations (such as the bulk-
average) are required can be handled by the method of
DeGance and Johns (15-17).

It is important to provide some physical insight into
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the nature of the coefficients appearing in Equation 21.
k, may be thought of as a pseudo-homogeneous reaction
rate constant accounting for disappearance of solute
through possible reactions at the wall. Or as in Doshi, et
al (19) where loss of fluid through the walls results in a
concentration buildup within the channel, &, accounts for
this process. The quantity — k; may be thought of as the
velocity of the solute cloud through the tube. It is time-
dependent in general. For instance, if the solute is in-
jected only into the central regions of the tube in Experi-
ment 3, initially the solute cloud will move rapidly.
However, as the solute diffuses across the cross-section,
asymptotically, in that experiment, the solute will move
with the average speed of the flow. Thus, as t = o, k;
= —Up.

The dispersion coefficient, k,(f), in Equation 21, is in-
herently time-dependent. It starts out at time zero being
exactly equal to the molecular diffusivity, D. k, increases
with time, and asymptotically approaches the Taylor-Aris
value given in Equation 12 (23, 24). In a short tube, this
asymptotic condition will never be reached, and the
small-time behavior of the dispersion coefficient can be
very important. A case in point is the study of Ultman
and Blatman (57), who examined the dispersion of so-
lutes in models of the human lung. Here, relatively short
segments of tube bifurcate into new tubes, and the phe-
nomena of interest in each tube occur over a time scale
that is short compared to the diffusion time scale across
the tube.

The higher-order coefficients k() for / = 3 in Equa-
tion 21 are small, and the result is usually truncated after
the term involving k3, to give the classical Taylor disper-
sion equation. However, at small values of time, the
higher-order terms can be important.

An interesting new development in dispersion theory
has been presented over the last few years by R. Smith in
a series of papers (43-46). He introduces a solution form,
different from Equation 20, which is in a natural way
able to accommodate continuous discharges of solute, as
well as instantaneous ones. The approach, described by
Smith as a delay-diffusion model, holds much promise.
In particular, it is known from numerical calculations that
the axial distributions of the cross-sectional average con-
centration are actually skewed in the initial stages of
thought Experiment 3. Thus, a dispersion model of the
type in Equation 10 cannot predict such distributions due
to its inherent spatial symmetry. Smith’s delay-diffusion
model does very well in predicting such distributions
properly.

The ideas presented in conjunction with the generalized
dispersion Equation 21 can be connected logically to the
development of Aris (7), who derived results for the spa-
tial moments of the average solute concentration. In par-
ticular, the time dependences of the speed of the solute
cloud and the dispersion coefficient are anticipated by
Aris in the results displayed by him for the moments.
The connection among the coefficients k;(f) and axial
moments of the solute distribution is given by Subrama-
nian (47).

The nature and properties of the series in the right-
hand side of Equation 20 are not obvious. While it is
clearly a generalization of Taylor’s result in Equation 19,
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it is not at all clear whether the series actually represents
the left-hand side at least in some asymptotic sense. The
question of the accuracy of truncated versions of Equa-
tion 20 among other things has been addressed by De-
Gance and Johns (15). The origin of Equation 20 be-
comes more clear if one examines the problem after
taking Fourier transforms in the axial coordinate. This
point is addressed briefly in the appendix.

As seen here, dispersion theory involves averaging the
concentration over the cross-section and examining the
behavior of this average as a function of the remaining
variables. One might think of this as a general methodol-
ogy wherein a function is averaged over ‘‘local’’ varia-
bles and the behavior of this average as a function of the
remaining ‘‘global’’ variables is studied. This general
point of view is put forth by Brenner (5), and is applica-
ble to a wide variety of problems which superficially ap-
pear very different from the ones treated here. An exam-
ple considered by Brenner in (5), as well as in several
other papers which he has published recently, is that of
the settling of a collection of non-spherical particles.
Here, averaging is done over the various possible orien-
tations the particles can assume, just as the concentration
is averaged over the cross-section in the problem consid-
ered in this module.

Finally, a note of caution. The reader who goes to
Taylor’s classic paper (52) will find that Taylor used an
intuitive procedure, not always rigorous, in arriving at
the result for the dispersion coefficient k. He was suc-
cessful in capturing the essence of this problem, as he
had a knack of doing, because of his phenomenal insight.
In particular, the axial derivatives of the average concen-
tration are asymptotically small at large values of time.
This permitted Taylor to make certain approximations,
and correctly estimate the radial concentration variations
which are crucial to the calculation of the asymptotic dis-
persion coefficient. Imitation of Taylor’s procedure in a
new setting without regard to rigor can easily lead the
user to incorrect and indefensible predictions, a trap one
must avoid.

CONCLUDING REMARKS

As demonstrated in this module, a simple experiment
in the laboratory on the unsteady transport of a solute
through a capillary can lead to interesting models. There
are several areas which were left unaddressed in this
module. The reader is encouraged to go directly to the
published literature for more information. An excellent
review article on the subject of dispersion authored by
Nunge and Gill (34) appeared in 1969. This reference
presents a state-of-the-art review of the area at that time
and covers subjects such as dispersion in turbulent flow
and in various flow geometries, and the effects of buoy-
ancy on dispersion.

The bibliography provided at the end of this module
not only lists the articles cited here, but also includes
several pertinent articles which have appeared in the liter-
ature since the appearance of the Nunge-Gill review.
While it is by no means an exhaustive list, it should di-
rect the reader to the relevant literature for further en-
lightenment on this subject.

American Institute of Chemical Engineers



APPENDIX

The purpose of this Appendix is to briefly address the
question of the origin of the generalized dispersion solu-
tion given in Equation 20 of the module. The method of
Fourier transforms is used for this purpose. This material
is relegated to an Appendix since it is not necessary to be
familiar with it in order to understand the contents of the
module; yet, it may help in appreciating the material a
little better.

The Fourier transform of f(x) may be defined as fol-
lows (28).

F®="_ ree-o< ax (A1)
Then, the inverse is given by
Lo
s0=—1{" F@ren dg (A2)
27 d -

By taking Fourier transforms of both sides of Equation
20 in the module and rearranging the result, one gets

cu, r; B & —
CEB > &, r) (@B

k=0

(A-3)

Thus, Equation 20 results from an attempt to expand the
ratio of the Fourier transforms of the local and average
concentrations in a power series in 3. The properties of
such series can be investigated conveniently by trans-
forming the equations for C(¢, x, r) to Fourier space.
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NOMENCLATURE

C = concentration of solute

C,, = cross-sectional average concentration (see Equa-
tion 9)

C, = initial concentration in solute slug

D = molecular diffusivity

g« = functions appearing in Equation 20

k = dispersion coefficient

k; = coefficients appearing in Equation 21

r = radial coordinate

R = tube radius

! = time

v, = axial velocity of fluid

v, = average axial velocity

Xx = axial coordinate

x; = transformed coordinate (see Equation 6)

x; = length of solute slug

*The symbol ~ means that the right-hand side represents left-hand side
in the sense of an asymptotic expansion.
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STUDY PROBLEMS

1.

How is miscible dispersion different from molecular
diffusion?

Why does a uniform velocity field cause no axial dis-
persion?

. Does the velocity profile have to be parabolic to cause

axial dispersion? For instance, would you see axial
dispersion with a linear velocity profile which occurs
in simple Couette flow?

. What was Taylor’s principal contribution in his 1953

paper?

. What is the difference between the Taylor dispersion

coefficient and the Taylor-Aris dispersion coefficient?

. Does diffusion help or hinder axial dispersion in flow

systems?

HOMEWORK PROBLEMS

1.

A capillary has a diameter of 4 mm and has water

flowing through it at an average velocity of 50 mm/s.
What would be the Taylor dispersion coefficient k£ for
potassium permanganate in this system? The diffusiv-

16

ity of permanganate at room temperature is D = 1.5
X 1072 m?%/s. Compare the value of k to that of the
molecular diffusivity. Is the correction for axial mo-
lecular diffusion significant in this case?

. Taylor’s dispersion equation also is often written in

the following form:

aC,  3C,  9°Cp
o —2 =k

ar ax ax?

(H-1)

Show that Equations H-1 and 10 (in the module) are
equivalent by carrying out the transformation from the
(¢, x) system to the (¢, x;) system, using Equation 6 in
the module.

. Try to satisfy the initial condition in Equation 14 by

using Equation 18—do you encounter any difficulty?
How would you satisfy Equation 14 if g = g(¢, r) in
Equation 18?

. Two identical slugs of dilute potassium dichromate

solution are introduced at the same instant into water
flowing through two identical tubes of inside diameter
50 mm. The only difference between the systems is
that in tube 1, the average velocity of the water vy,

= 40 mm/s, whereas in tube 2, the average velocity
Um, = 80 mm/s. A strange result is observed! The
solute distribution in tube 2 moves down the tube
twice as fast as that in tube 1, as expected, but it dis-
perses in the axial direction to a much smaller extent
than in tube 1. Explain this observation on the basis
of the physical mechanisms influencing dispersion.

. A circular tube has its inside wall coated with a thin

layer of catalyst. A dilute mixture of two solutes is
introduced as a slug at the inlet at time zero. Both the
solutes travel down the tube and undergo dispersion in
laminar flow, but only one of them reacts at the cata-
lytic wall. Will the reacting solute travel at a different
average velocity from the non-reacting one? Will it
disperse more or less in the axial direction? Why?
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