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Kinematics is the study of motion without dealing with the forces that affect motion.  The 
discussion here is of limited scope and for more details, the reader is encouraged to consult 
any of the references listed at the end. The notation used and the details of the development 
in many places are directly borrowed from Aris (1) and Batchelor (2).   Our focus here is 
on fluid motion.  We shall use rectangular Cartesian coordinates ( ), ,x y z , along with the 
associated basis set of mutually orthogonal unit vectors ( ), ,i j k .  The position vector is  
labeled x . 
 
Imagine a tiny line element dx , labeled PQ  in the sketch, at some instant of time.  After 
a small amount of time dt , the two ends have moved to new locations because of fluid 
motion, and the new line element is labeled P Q′ ′ . 
 
 
 
 
 
 
 
 
 
 
We can see that if the velocity were to be the same at both ends of the element, it would 
change neither its length, nor its orientation.  Therefore, in a uniform velocity field, there 
is simple translation of fluid elements with no deformation or rotation.  To cause either, 
the velocity ( )v x must be non-uniform.  To understand the nature of the changes in fluid 
elements brought about by the flow, we must, therefore, investigate the velocity gradient, 
∇v , which is a second order tensor. 
 
From calculus, we know that the differential change xdv can be written as 

x x x
x

v v vdv dx dy dz
x y z

∂ ∂ ∂
= + +

∂ ∂ ∂
 

and similar results can be written for the changes ydv  and zdv .  It follows that the 
differential change in the vector velocity, dv , is given by 

P

Q

Q′
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+ +

∂ ∂ ∂    ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂     ∂ ∂ ∂∂ ∂ ∂
= + + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

∂
=

x x zv = i j k

i j k

i j k i j k i j k

dx dy dz d
x y z

∂ ∂
+ + = ∇ •

∂ ∂ ∂
v v v v x

 

 Thus, the relative velocity of a point a distance dx  from any given location is given by 
the dot product of the tensor ∇v  and the differential line element dx .  This tensor can be 
written as follows.   
 

x x x

y y y

z z z

v v v
x y z
v v v
x y z
v v v
x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ 

∂ ∂ ∂ 
∇ =  ∂ ∂ ∂ 

 ∂ ∂ ∂
 ∂ ∂ ∂ 

v  

 
Any tensor can be written as the sum of a symmetric and an antisymmetric tensor.  Let us  
do this with the velocity gradient tensor, writing it as 
 
∇ = +v E Ω  
 
where the (symmetric) rate of strain or rate of deformation tensor E  is given by 
 

( )1
2

= ∇ ∇ TE v + v  

 
and the (antisymmetric) vorticity tensor Ω  is given by  
 

( )1=
2

∇ ∇ Tv - vΩ  

 
The action of each of these contributions to the velocity gradient will be explored in detail 
next.  First, we consider the vorticity tensor. 
 

Vorticity Tensor Ω  
 
The vorticity tensor Ω  is a skew-symmetric tensor.  We can write its components in terms 
of the components of the velocity gradient as follows. 
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 ∂  ∂ ∂ ∂ − −    ∂ ∂ ∂ ∂   
 ∂ ∂   ∂ ∂ = − −   ∂ ∂ ∂ ∂    
 

∂ ∂∂ ∂  − −   ∂ ∂ ∂ ∂    

Ω  

 
A skew-symmetric tensor ijA can be formed from a vector ka by writing ij ijk kA aε= .  The 

vector associated with the vorticity tensor in this manner is 1
2

− ω , where = ∇×vω  is 

known as the vorticity vector. Using the relationship between Ω  and  1
2

− ω , we obtain 

1
2ij j ijk j kdx dxε ωΩ = −  or in Gibbs notation, 1 1

2 2
• = − × = ×dx dx dxΩ ω ω    

 
This means that the relative motion that is contributed by the vorticity tensor at a point an 
infinitesimal distance away from a reference point in a fluid is that caused by a rigid 

rotation with an angular velocity equal to 1
2

ω .   

 
Because a fluid does not usually rotate as a rigid body in the manner that a solid does, we 
should interpret the above statement as implying that the average angular velocity of a fluid 
element located at a point is one-half the vorticity vector at that point (2).  To prove this 
claim, consider a surface formed by an infinitesimal circle of radius a  located at a point 
x . Let the unit normal vector to the surface (perpendicular to the plane of the paper) be n
, and the unit tangent vector to the circle at any point be t . 
 
 
 
 
 
 
 
 
 
 
Apply Stokes’s theorem to the velocity field in this circle. 

( )
S C

dS ds∇× • = •∫ ∫v n v t  

Here, dS is an area element on the surface of the circle S and ds is a line element along the 
circle C.   Because •v t is the component of the velocity along the periphery of the circle, 

a

t
n
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we can write the average linear velocity along the circle as 1
2 C

ds
aπ

•∫ v t and therefore the 

average angular velocity as 2

1
2 C

ds
aπ

•∫ v t .  From Stokes’s theorem, we see that this is 

equal to the average value of 1
2

 ∇× • 
 

v n  over the surface of the circle.  Thus, in the limit 

as the radius of the circle approaches zero, we find that the average angular velocity around 
the circle approaches the value of one-half the component of the vorticity vector in a 
direction perpendicular to the surface of the circle.  We also can show (see Batchelor, page 
82) that the angular momentum of a spherical element of fluid is equal to one-half the 
vorticity times the moment of inertia of the fluid, just as it is for a rigid body. 
 
Vorticity Vector 
 
The vorticity = ∇×vω , is an important entity in fluid mechanics.  It is transported from 
one place to another in a fluid by convective and molecular means, just as energy and 
species are, and an appropriate partial differential equation that governs its transport can 
be written.  In addition, vorticity also is intensified by the stretching of vortex lines, a 
mechanism that is not present in the transport of energy and species.  One reason for 
working with the equations of vorticity transport is that pressure is absent as a dependent 
variable in those equations. It can be shown that if a fluid mass begins with zero vorticity, 
and the fluid is inviscid (meaning the viscosity is zero), the vorticity will remain zero in 
that fluid mass.  A flow in which the vorticity is zero is known as an irrotational flow. 
 
Vorticity is generated at fluid-solid interfaces and at fluid-fluid interfaces. Vorticity cannot 
be generated internally within an incompressible fluid.  This is the reason why, in a high 
Reynolds number flow (implying weak viscous effects) past a rigid body, most of the flow 
can be described by using the equations that apply to irrotational flow, with the vorticity 
being confined to a boundary layer near the surface of the body. 
 
Vortex Lines and Tubes 
 
Just as a streamline is a curve to which the velocity vector is tangent everywhere, we can 
define a vortex line as a curve to which the vorticity is tangent everywhere.   If the 
components of  the vorticity = ∇× vω  are ( ), ,x y zω ω ω , then we can write the equations 
of the space curves that are vortex lines as 
 

x y z

dx dy dz
ω ω ω

= = . 

 
The surface that is formed by all the vortex lines passing through a closed reducible curve 
is known as a vortex tube.  If we construct an open surface S bounded by this closed curve 
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C, we can define the strength of the vortex tube as  
S

•∫dS ω .  By using Stokes’s theorem, 

we can see that this is the circulation 
C

ds•∫ v t  where C  is any closed curve around the 

vortex tube, t  is a unit tangent vector to the curve at any point, and ds is a line element.   
 
Rate of Strain or Rate of Deformation Tensor E  
 
From the above discussion of the vorticity tensor, you can see that the role of that tensor is 
to describe the instantaneous angular velocity of a fluid element, but that it contributes 
nothing to deformation of elements.  Now, we move on to discuss the significance of the 
rate of strain tensor, which contains all the information about the deformation. 
 
The rate of strain tensor is a symmetric tensor.  We can write its components in terms of 
the components of the velocity gradient as follows. 
 

1 1
2 2

1 1
2 2

1 1
2 2

yx x x z

y y yx z

yxz z z

vv v v v
x y x z x

v v vv v
x y y z y

vvv v v
x z y z z

 ∂  ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂   ∂ ∂ = + +   ∂ ∂ ∂ ∂ ∂    
 

∂ ∂∂ ∂ ∂  + +   ∂ ∂ ∂ ∂ ∂    

Ε  

 
The diagonal elements of E 
 
Following Aris closely (1), consider a line element dx with a length ds . 
 

( ) ( )2d dds d d
dt dt

= •x x  

 

Using the fact that d d
dt

=
x v , the above result can be rewritten as 

 

( ) ( )2 2 2 2 2dds ds d d d d d d d d
dt

= • • ∇ • = • • • •x v = x v x x E x + x xΩ  

 
The second term in the far-right-side is zero because Ω  is an antisymmetric tensor.  To see 
this, we write 
  

ij i j ji j i ij i jd d dx dx dx dx dx dx• • Ω = Ω = − Ωx x =Ω  so that 0ij i jdx dxΩ = . 
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In the above result, after writing the result in index notation, we first exchange the indices 
i  and j  to obtain an intermediate result, and then use the antisymmetry property to write 

ij jiΩ = − Ω .   
 
Therefore, we find that 
 

( )dds ds d d
dt

= • •x E x  from which, by dividing through by 2ds   we can write 

( )1 d d dds
ds dt ds ds

= • •
x xE  

 
The vector /d dsx  is a unit vector pointing in the direction of the infinitesimal vector dx
. Therefore, we can think of the right side of the above result as the “double projection” of 
the tensor E  in that direction.  The term “projection” is used in a loose sense here.  The 
physical meaning is clear.  The rate of strain of a line element pointing in any direction at 
a given point (which is the time rate of change of length, divided by the length) is the dot 
product of a unit vector in that direction with the dot product of the rate of strain tensor 
with the same unit vector. Let us choose the direction to be the x − direction.  In this case, 

the rate of strain of a line element in that direction is simply 11E , which is equal to xv
x

∂
∂

.  

In a like manner, the rate of strain of a line element in the y − direction is yv
y

∂

∂
, and that in 

the z − direction is zv
z

∂
∂

.  This is the physical interpretation of the diagonal elements of the 

rate of strain tensor.   
 
The sum of the diagonal elements of E , known as the trace of E  is ∇ • v . This is known 
as the rate of dilatation of a fluid element at the given location.  To see why, consider a 
material body occupying a volume V  enclosed by the surface S .   Let us inquire how  V  
changes with time.  We can write the rate of change of the volume of a material body with 
time as the integral of d •S v  over the surface. 
 

S V

dV d dV
dt

= • = ∇ •∫ ∫S v v  by the divergence theorem.   

 

From the above, we can see that  
0 0

1 1lim lim
V V

V

dV dV =
V dt V→ →

= ∇ • ∇ •∫ v v .  So, the trace of E  

is the rate of increase in the volume of an infinitesimal element, divided by its volume, and 
is called the rate of dilatation.  When the flow is incompressible, the rate of dilatation is 
zero. 
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The off-diagonal elements of E  
 
Now, consider two line elements dx  and d ′x  at a given point x  and let the angle between 
them be θ . 
 
 
 
 
 
 
 
 
Let us investigate the time rate of change of the dot product of the vectors dx  and d ′x . 
 

( ) ( )cos i i i i

i i
j i j i

j j

d dds ds d d dv dx dx dv
dt dt

v vdx dx dx dx
x x

θ ′ ′′ ′= • = +

∂ ∂′ ′= +
∂ ∂

x x
 

In writing the result in the second term in the second line, we have used the fact that the 
infinitesimal change idv ′ is the change in the velocity over an infinitesimal distance in the 
direction of the vector d ′x .  Interchanging the indices i  and j  in that second term permits 
us to combine the two terms. 
 

( )cos 2ji
i j ij i j

j i

vvd ds ds dx dx E dx dx
dt x x

θ
 ∂∂ ′ ′′ = + =  ∂ ∂ 

 

 
Dividing both sides by ds ds′  yields 
 

( )1 cos 2 2ji
ij

dxdxd d dds ds E
ds ds dt ds ds ds ds

θ
′ ′

′ = = • •
′ ′ ′

x xE  

 
So, we see that if we take the dot product of E  with unit vectors in two different directions 
in succession (the order is immaterial because E  is symmetric), the result is the left side 
of the above equation.  Let us work out the differentiation in the left side. 
 

( ) ( ) ( )1 1 1cos cos sind d d dds ds ds ds
ds ds dt ds dt ds dt dt

θθ θ θ ′ ′= + − ′ ′ 
 

 
The term in square brackets in the right side is the sum of the individual rates of strain of 
the two line elements.  We can see that the above result reduces to the earlier result we 
obtained when the two vectors idx  and idx ′  are the same.  Let us consider the case when 
the two vectors are orthogonal to each other.  In this case, we obtain 

P

Q

Q′
θ

dx

d ′x
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d d
ds ds

′
• • =

′
x xE 1

2
d
dt
θ

−  

 
So, the sequential dot products of E  with unit vectors in two orthogonal directions yields 
one-half the rate of decrease of the angle between the unit vectors in those directions.  If 
we choose these two orthogonal directions to coincide with any two coordinate directions, 
then the dot products yield the off-diagonal elements of E .  For example, if we use x  and 
y −  directions, the element is ( )12 21E E= .  Similar physical interpretations can be given to 
the other off-diagonal elements of the rate of strain tensor.  Thus, the off-diagonal elements 
describe shear deformation of the fluid. 
 
There are three mutually orthogonal directions associated with the symmetric tensor E   
that are known as its eigenvector or principal directions.  We can use a basis set built from 
these principal directions to describe the components of the tensor.  If we do, the tensor 
will be diagonal.  The off-diagonal elements will be zero, so that the rate of change of the 
angles between the principal directions is zero; of course the entire set of principal axes 

can rotate, and in fact it does, with the angular velocity 1 1
2 2

∇×ω = v . 

 
Instantaneous Deformation of a Fluid Element 

 
Based on all of the above material on kinematics, we can conclude that in a flow, an 
infinitesimal spherical element of fluid undergoes translation, rotation, and deformation in 
general.  It deforms into an ellipsoid whose axes are aligned with the principal axes of the 
rate of strain tensor.  This ellipsoid also rotates with an instantaneous angular velocity that 
is equal to the one-half of the vorticity of the fluid at the given point. 
 
Some good sources for further study are listed below. 
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