Solution of Partial Differential Equations

Combination of Variables
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Introduction and Problem Statement

We encounter partial differential equations routinely in transport phenomena. Some
examples are unsteady flow in a channel, steady heat transfer to a fluid flowing through a
pipe, and mass transport to a falling liquid film. Here, we shall learn a method for
solving partial differential equations that complements the technique of separation of
variables. We shall also learn when the method can be used. We consider the same
model problem, namely the motion induced in fluid contained between two long and
wide parallel plates placed with a distance b between them as shown in the sketch below.
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The fluid is initially assumed to be at rest. Motion is initiated by suddenly moving the
bottom plate at a constant velocity of magnitude U in the x—direction. The velocity of
the bottom plate is maintained at that value for all future values of time t while the top
plate is held fixed in place. There is no applied pressure gradient, with motion being
caused strictly by the movement of the bottom plate.

We shall assume the flow to be incompressible with a constant density p and Newtonian
with a constant viscosity x. We neglect edge effects in the z —direction so that we can

set v, =0and (;ﬂzo, and assume fully developed flow, implying ?:0. Here, v
z X

stands for the velocity vector, and the subscripts denote components.



It can be established from the continuity equation and the kinematic condition at one of
the walls that v, =0. Therefore, the only non-zero velocity component is v, (t,y),

which can be shown to satisfy the following partial differential equation.
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In Equation (1), t represents time, and v is the kinematic viscosity. The initial condition

is

Yy (O’ y) =0 (2)
and the boundary conditions are

v, (1,0)=U 3)
and

v, (t,b)=0 4

Using separation of variables, we obtained a solution of these equations that can be
written as follows.

v, (t,y) ) exp[—nzzrzv;[}
AUR :1—%—— b sin(ngyj (5)

The infinite series in Equation (5) is uniformly convergent for all values of time t. The
exponential factor plays a strong role in assuring that the terms decrease rapidly with
increasing values of n so that only a few terms are necessary to calculate an accurate
value of the velocity at moderate to large values of time, corresponding to the scaled time

vt/b® not being too small compared to unity. But, if we attempt to calculate the sum

numerically for small values of time (vt/b® small compared with unity) when the
exponential factor is not as helpful, we find that a large number of terms needs to be
included to obtain a sufficiently accurate answer. Therefore, in this module we seek a
solution technique that will permit us to calculate the velocity field accurately without too
much labor for small values of time.

Physically, at values of time t for which the scaled time vt/b® is small compared to
unity, the effect of the motion of the bottom plate is only felt by the fluid up to a small
distance (depth of penetration) from the moving plate. Outside of this region of
influence, the fluid is practically stationary. Therefore, one might approximate the
system for such small values of time by another in which the top plate is absent. This
problem was first considered by Lord Rayleigh, and therefore is known as Rayleigh’s
problem. Mathematically, we replace the boundary condition at the top plate, given in
Equation (4), with



Vv, (t,oo):O (6)

Note that to be precise, we must write Equation (6) as v, (t,y »>»)—0, and the
equation must be read to imply only such a meaning.

A Speculation

There is neither a natural length scale in the problem, nor a natural time scale. We can
use the reference velocity U as a natural scale for the velocity v, , but it is convenient to

work with the remaining physical variables just as they are. The solution of Equations
(1) to (3) and (6) is qualitatively sketched below for two different values of time. In the
figure, the symbol v is used to represent v, .
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The solid (black) line corresponds to a small value of time, and the dashed (red) line to a
larger value of time. We can see how the change in velocity made at the bottom plate at
time zero propagates deeper into the fluid with increasing time. It is tempting to speculate
that these profiles are similar in shape. By implying similarity of shape, we mean that

scaling the distance variable with the thickness of the affected region &(t) should lead to

these two curves and others like them collapsing into a single universal curve. In
mathematical language, if we define a certain combination of the original variables as a



new variable 7 =y/&(t), can we expect the velocity field v, (t,y) to become a function

Ug(n) that depends only on the single new variable? This speculation is shown in the
sketch below.
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The transformation to 7 is known as a “similarity transformation” and the variable 7 is
termed a “similarity variable.”

Solution by Combination of Variables

We now proceed to state the above speculation in mathematical form and follow through
the consequences. This is the method of “Combination of Variables.”

Assume
v, (ty) = Ug(n) (7)
where
_ Y
U—m (8)

and &(t) is a function that is yet to be determined. Note that we always can transform

from two independent variables to two new independent variables, but to transform to a
single new variable is not always possible. Therefore, we need to insert Equations (7)
and (8) into the governing equation and the initial and boundary conditions and see if the



process leads to a consistent mathematical framework. For this purpose, we shall use the
chain rule of differentiation as needed.

%:U @di:_ulzd_&%:_uid_a% (9)
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Note that when writing the derivative of ¢ with respect to 77, we already have assumed
that ¢ can depend explicitly only on the single variable 7 and used the ordinary

derivative instead of the partial derivative. If our conjecture proves to be incorrect, and
¢ were to depend explicitly on both 7 and t, the above chain rule result will need to be

modified to include a partial derivative of ¢ with respect to time.
Let us now obtain expressions for the derivatives with respect to v .
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Substituting Equations (9) and (11) into the governing differential equation for v,
(Equation (1), leads to the following equation after slight rearrangement.

¢"+77[5§J¢’=0 (12)
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In writing Equation (12), we have used the expedient of designating derivatives with
respect to the argument of each function with primes. Recall that we assumed that ¢

explicitly depends only on the similarity variable . But, Equation (12) suggests that
time also will explicitly appear in the result for ¢ because of the presence of the time-

dependent term 86". We have not yet specified &(t), however. Here is our chance to
do so and eliminate the inconsistency at the same time. We choose

58" =Cy (13)

where C is an arbitrary constant. Later, we shall see that the value of C will affect the
result for &(t), but will not affect the final solution for v, (t,y). Therefore, for

convenience, we set C =2, writing Equation (12) as



P"+2n¢ =0 (14)

We now need to transform the initial and boundary conditions. Note that there are three
conditions on the velocity field v, (t, y), but only a second order differential equation for

#(n). The specification of the arbitrary constants that arise in the integration of the
latter requires only two conditions.

First, consider the boundary condition at the bottom surface y =0, given in Equation (3).
This transforms in a straightforward manner to

4(0)=1 (15)

The fact that a quiescent condition is approached as y — «, described by Equation (6),
becomes

#()=0 (16)

The initial condition, given in Equation (2), transforms to

¢(LJ 0 (17)

5(0)

and we see that we have not completely eliminated the original variables from appearing
explicitly in the problem statement for ¢. To remove this inconsistency, and at the same

time select an initial condition for §(t), we must set
o (0) =0 (18)

The choice in Equation (18) makes Equation (17) collapse into Equation (16); therefore,
the three conditions on v, (t,y) yield two conditions on ¢(7) and one initial condition

on o (t) and we have a completely consistent mathematical framework for the problems

for ¢(n7) and &(t). Note that by this approach of “Combination of Variables” we have

reduced the solution of the original partial differential equation to that of two ordinary
differential equations for these two functions.

First, the general solution of Equation (14) can be written as

$(n)=a +a, [e7dy (19)



where a, and a, are constants of integration that must be determined by applying the

boundary conditions given in Equations (15) and (16). Use of these conditions leads to
the result

¢(n)=erfc(n) (20)

where *“erfc” means “complementary error function.” This function is defined as
follows.

erfc(n)=1-erf () (21)

where the “error function” “erf ” is defined as

ie‘yzd;/ .

erf (7) = ° . \/Z,J'e‘yzdy (22)
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You can find out more about the error function and the complementary error function
from Abramowitz and Stegun [1].

The solution of Equation (13) with the constant C =2, when specialized using the initial
condition given in Equation (18), is

5(t)=2t (23)

When this result for 5(t) is used in Equation (8) in which 7 is defined, the solution for
the velocity field can be written as

v, (t,y) =U erfc(zjﬁj (24)

If we had made a different choice of value for the constant C that appears in Equation
(13), it would have affected the results as follows.

s(t)=+v2Crt :\Ezﬁ (25)

#(n)= erfC(\E 77] (26)



You can see that when the definition of 7 given in Equation (8) is used in Equation (26),
along with &(t) from Equation (25), the factor vC/2 cancels out, leading to the same

result for the velocity field given in Equation (24). You may wonder about the
uncertainty in the value of &(t), which is the thickness of the “affected region,” caused
by the indeterminacy of the value of C. This is perfectly natural because in a diffusive
process, the influence of a change is felt everywhere in the fluid instantaneously. This

means that there can be no unambiguous definition of a finite thickness for the affected
region; only its scaling can be established uniquely. The complementary error function

assumes a value of 4.678x10° when its argument is 2. Therefore, at a distance

y =4/vt , the velocity would be less than 0.5% of the value at the surface of the moving
plate, and can be considered negligible for practical purposes. Because of this, the

estimate (4\/5 ) IS sometimes used for the thickness of the region influenced by the
sudden movement initiated at the boundary.

Summary

In this module, we have learned the method of combination of variables for solving
partial differential equations; it complements the method of separation of variables. First,
we identified the governing partial differential equation and boundary conditions for our
system. Then we

1. noted that the effect of a boundary condition imposed at time zero is felt in a region
near that boundary that is small in extent for small values of time and used this fact to
replace the boundary condition at the other boundary with one at infinity;

2. assumed that the dependence of the velocity field on the two independent variables can
be expressed as a dependence on a single new similarity variable;

3. traced the consequences of this similarity hypothesis mathematically, requiring that the
original independent variables not be allowed to appear explicitly in the problem posed in
the new similarity variable;

4. obtained an ordinary differential equation for the thickness of the affected region and
another ordinary differential equation for the velocity field,

5. collapsed the three boundary conditions on the velocity field into two on the velocity
field as expressed in the similarity variable, also yielding an initial condition for the
thickness of the affected region;

6. solved these ordinary differential equations to obtain results for the thickness of the
affected region and the velocity field,;

7. noted that the thickness of the affected region can only be defined to within a
multiplicative arbitrary constant, whereas the velocity field is uniquely determined.



The important features of the method are that the domain must be semi-infinite, and the
boundary condition at infinity must be the same as the initial condition; even though the
problem we posed is linear, the method is equally applicable to non-linear problems.

Concluding Remarks

The problem of unsteady one-dimensional heat conduction in a semi-infinite solid slab
(or a quiescent liquid layer) in the y—direction, when the temperature at the surface

y=0 is changed to a new value at time zero, is described by the same governing

equations and boundary conditions. The assumptions are that there are no sources or
sinks, heat transport occurs only by conduction with a constant thermal conductivity, the
density and specific heat of the material are constant, and that the slab is very long and
very wide so that end effects and edge effects can be neglected. By analogy, it can be
seen that the same equations also describe unsteady diffusion in a similar situation. All
of these cases can be handled by the same solution method. Note that unlike separation
of variables, combination of variables does not require the system of governing equation
and boundary conditions to be linear. This method has used successfully in solving the
Navier-Stokes equations including inertia (and therefore non-linear) in forced boundary
layer flows, and also in solving problems of natural convection in boundary layers
wherein the fluid mechanics and heat transport problems lead to coupled non-linear
governing equations.
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