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The governing equations for the velocity and pressure fields are partial differential equations that
are applicable at every point in a fluid that is being modeled as a continuum. When they are
integrated in any given situation, we can expect to see arbitrary functions or constants appear in
the solution. To evaluate these, we need additional statements about the velocity field and
possibly its gradient at the natural boundaries of the flow domain. Such statements are known as
boundary conditions.  Usually, the specification of the pressure at one point in the system
suffices to establish the pressure fields so that we shall only discuss boundary conditions on the
velocity field here.

Conditions at a rigid boundary

It is convenient for the purpose of discussion to identify two types of boundaries. One is that at
the interface between a fluid and a rigid surface. At such a surface, we shall require that the
tangential component of the velocity of the fluid be the same as the tangential component of the
velocity of the surface, and similarly the normal component of the velocity of the fluid be the
same as the normal component of the velocity of the surface. The former is known as the “no
slip” boundary condition, and has been found to be successful in describing most practical
situations. It was a subject of controversy in the eighteenth and nineteenth centuries, and was
finally accepted because predictions based on assuming it were found to be consistent with
observations of macroscopic quantities such as the flow rate through a circular capillary under a

given pressure drop. If we designate the velocity of the rigid surface as V and that of the fluid as
V, and select a unit tangent vector to the surface as t, the no-slip boundary condition can be
stated as

Vet =V et on a rigid surface (no slip)
The equality of the normal components of the velocity at the boundary arises from purely

kinematical considerations when there is no mass transfer across the boundary. If N represents
the unit normal,

ven=\Ven on a rigid surface (kinematic condition)

As a consequence of the two conditions, we arrive at the conclusion that the fluid velocity must
match the velocity of the rigid surface at every point on it.

v=V on a rigid surface

The no-slip condition has been found to be inapplicable in special circumstances such as at a
moving contact line when a drop spreads over a solid surface, or in flow of a rarefied gas through
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a pore of diameter of the same order of magnitude as the mean free path of the gas molecules.
For the types of problems that we shall encounter, it is an adequate boundary condition.

Conditions at a fluid-fluid interface

Sometimes, we encounter a boundary between two fluids. A common example occurs when a
liquid film flows down an inclined plane. The surface of the liquid film in contact with the
surrounding gas is a fluid-fluid interface. Other examples include the interface between a liquid
drop and the surrounding continuous phase or that between two liquid layers. It is convenient to

designate the two fluid phases in contact as phase | and phase 11 .
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The unit normal vector N points into phase | here and the sketch also shows a unit tangent
vector to the interface T .

It so happens that the velocity fields in phases | and |l are continuous across the interface.
This vector condition also can be viewed as being in two parts, one on the continuity of the
tangential component of the two velocities, analogous to the no-slip boundary condition at a rigid
boundary, and the continuity of the normal component of the two velocities, a kinematic
consequence when there is no mass transfer across the interface.

Therefore, we can write
V,et=Vv, et atafluid-fluid interface (continuity of tangential velocity)
and

V,en=v, en at a fluid-fluid interface (kinematic condition)

Notice that we have two unknown vector fields V, and V|, now, and therefore need twice as

many boundary conditions. Therefore, it is not sufficient to write just the above no-slip and
kinematic conditions at a fluid-fluid interface. We also need to write a boundary condition
connecting the state of stress in each fluid at the interface. The general form of this condition is
given below.

ne [TI -T, ] =2Hon-V o atafluid-fluid interface (jump condition on the stress)
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In the stress boundary condition, the symbols T, and T,, represent the stress tensor in each

fluid, H is the mean curvature of the interface at the point where the condition is being applied,
o is the interfacial tension of the fluid-fluid interface, and VS is the surface gradient operator

which can be writtenas V — n(n L V). That is , we remove the part of the gradient vector that

is normal to the surface. The left side in the stress boundary condition is the difference between

the stress vectors in fluids | and Il at the interface, or the “jump” in stress. This is the reason
for the choice of terminology used in describing this condition. The resulting vector is
decomposed into a part that is normal to the interface, namely the first term in the right side, and
a part that is tangential to the interface, given in the second term in the right side. Sometimes,
the condition is written as two separate scalar boundary conditions by writing the tangential and
the normal parts separately. In that case, we call the two boundary conditions the “tangential
stress balance” and the “normal stress balance.”

In the types of problems that we shall encounter, the stress boundary condition can be simplified.
The interfacial tension at a fluid-fluid interface depends on the temperature and the composition
of the interface. If we assume these to be uniform, then the gradient of interfacial tension will
vanish everywhere on the interface. This means that the tangential stress is continuous across the
interface because the jump in it is zero. Recall that the tangential stress is purely viscous in

origin. If Tt represents this stress component, we can write

Ty

— Tt” at a fluid-fluid interface (tangential stress balance)

|
The normal stress jump boundary condition actually determines the curvature of the interface at
the point in question, and therefore the shape of the entire fluid-fluid interface. This shape is
distorted by the flow. In the problems that we shall analyze, we shall always assume the shape
of the interface to be the static shape and as being specified. Therefore, we shall not be able to
satisfy the balance of normal stress. In fact, fluid mechanical problems involving the application
of the normal stress balance at a boundary are complicated, and must be solved numerically
unless one assumes the shape distortion to be very small or of a particularly simple form.

At a liquid-gas interface, we can further simplify the tangential stress balance. Consider the
surface of a liquid film flowing down an inclined plane. Let us assume that the flow is steady
and that the film surface is parallel to the inclined plane. In this situation, the normal velocity at
the free surface of the liquid is zero in both the liquid and the gas. The sketch depicts the

situation. gaS
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Because the normal velocity is zero at the free surface, the tangential stress balance simplifies to
the following result where the subscripts | and g represent the liquid and gas, respectively.

ov

x| X,0

ov
=u - at the free surface

/ul g
oy

The symbol £ in the above result stands for the dynamic viscosity. If we divide through by the

dynamic viscosity of the liquid, we obtain

aVx,l — /ug aVx,g
oy Ly oy

Because the dynamic viscosity of a gas is small compared with that of a liquid, the right side of
the above equation is small, and can be considered negligible. This allows us to write

at the free surface

aVx,l
~0 at the free surface

oy

Sometimes, this condition is represented as that of vanishing shear stress at a free liquid surface.
Note that this approximation of the tangential stress condition can be used only when the
motivating force for the motion of the liquid is not the motion of the gas. When a gas drags a
liquid along, as is the case on a windy day when the wind causes motion in a puddle of liquid,
the correct boundary condition equating the tangential stresses must be used.
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