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The governing equations for the velocity and pressure fields are partial differential equations that 
are applicable at every point in a fluid that is being modeled as a continuum.  When they are 
integrated in any given situation, we can expect to see arbitrary functions or constants appear in 
the solution.  To evaluate these, we need additional statements about the velocity field and 
possibly its gradient at the natural boundaries of the flow domain.  Such statements are known as 
boundary conditions.   Usually, the specification of the pressure at one point in the system 
suffices to establish the pressure fields so that we shall only discuss boundary conditions on the 
velocity field here.   
 
Conditions at a rigid boundary 
 
It is convenient for the purpose of discussion to identify two types of boundaries.  One is that at 
the interface between a fluid and a rigid surface.  At such a surface, we shall require that the 
tangential component of the velocity of the fluid be the same as the tangential component of the 
velocity of the surface, and similarly the normal component of the velocity of the fluid be the 
same as the normal component of the velocity of the surface.  The former is known as the “no 
slip” boundary condition, and has been found to be successful in describing most practical 
situations.  It was a subject of controversy in the eighteenth and nineteenth centuries, and was 
finally accepted because predictions based on assuming it were found to be consistent with 
observations of macroscopic quantities such as the flow rate through a circular capillary under a 
given pressure drop.  If we designate the velocity of the rigid surface as V and that of the fluid as 
v , and select a unit tangent vector to the surface as t , the no-slip boundary condition can be 
stated as 

 
• = •v t V t   on a rigid surface  (no slip) 

 
The equality of the normal components of the velocity at the boundary arises from purely 
kinematical considerations when there is no mass transfer across the boundary.  If n  represents 
the unit normal, 
 
 • = •v n V n  on a rigid surface  (kinematic condition)  
 
As a consequence of the two conditions, we arrive at the conclusion that the fluid velocity must 
match the velocity of the rigid surface at every point on it. 
 

=v V   on a rigid surface 
 
The no-slip condition has been found to be inapplicable in special circumstances such as at a 
moving contact line when a drop spreads over a solid surface, or in flow of a rarefied gas through 
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a pore of diameter of the same order of magnitude as the mean free path of the gas molecules.  
For the types of problems that we shall encounter, it is an adequate boundary condition. 
 
Conditions at a fluid-fluid interface 
 
Sometimes, we encounter a boundary between two fluids.  A common example occurs when a 
liquid film flows down an inclined plane.  The surface of the liquid film in contact with the 
surrounding gas is a fluid-fluid interface.  Other examples include the interface between a liquid 
drop and the surrounding continuous phase or that between two liquid layers.  It is convenient to 
designate the two fluid phases in contact as phase I  and phase II .   
 

 
The unit normal vector n  points into phase I  here and the sketch also shows a unit tangent 
vector to the interface t . 
 
It so happens that the velocity fields in phases I  and II  are continuous across the interface.   
This vector condition also can be viewed as being in two parts, one on the continuity of the 
tangential component of the two velocities, analogous to the no-slip boundary condition at a rigid 
boundary, and the continuity of the normal component of the two velocities, a kinematic 
consequence when there is no mass transfer across the interface. 
 
Therefore, we can write 
 

  • = •I IIv t v t  at a fluid-fluid interface (continuity of tangential velocity) 
 
and 
 

• = •I IIv n v n  at a fluid-fluid interface (kinematic condition) 
 
Notice that we have two unknown vector fields Iv  and IIv  now, and therefore need twice as 
many boundary conditions.  Therefore, it is not sufficient to write just the above no-slip and 
kinematic conditions at a fluid-fluid interface.  We also need to write a boundary condition 
connecting the state of stress in each fluid at the interface.  The general form of this condition is 
given below. 
 

[ ] 2I II sHσ σ• − = −∇n T T n  at a fluid-fluid interface (jump condition on the stress) 

n
I

II t
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In the stress boundary condition, the symbols IT  and IIT  represent the stress tensor in each 
fluid, H  is the mean curvature of the interface at the point where the condition is being applied, 
σ  is the interfacial tension of the fluid-fluid interface, and s∇  is the surface gradient operator 

which can be written as ( )∇ − •∇n n .  That is , we remove the part of the gradient vector that 
is normal to the surface.   The left side in the stress boundary condition is the difference between 
the stress vectors in fluids I  and II  at the interface, or the “jump” in stress.  This is the reason 
for the choice of terminology used in describing this condition.  The resulting vector is 
decomposed into a part that is normal to the interface, namely the first term in the right side, and 
a part that is tangential to the interface, given in the second term in the right side.  Sometimes, 
the condition is written as two separate scalar boundary conditions by writing the tangential and 
the normal parts separately.  In that case, we call the two boundary conditions the “tangential 
stress balance” and the “normal stress balance.” 
 
In the types of problems that we shall encounter, the stress boundary condition can be simplified.   
The interfacial tension at a fluid-fluid interface depends on the temperature and the composition 
of the interface.  If we assume these to be uniform, then the gradient of interfacial tension will 
vanish everywhere on the interface.  This means that the tangential stress is continuous across the 
interface because the jump in it is zero.  Recall that the tangential stress is purely viscous in 

origin.  If tτ  represents this stress component, we can write 

 

I IIt tτ τ=  at a fluid-fluid interface (tangential stress balance) 

 
The normal stress jump boundary condition actually determines the curvature of the interface at 
the point in question, and therefore the shape of the entire fluid-fluid interface.  This shape is 
distorted by the flow.  In the problems that we shall analyze, we shall always assume the shape 
of the interface to be the static shape and as being specified.  Therefore, we shall not be able to 
satisfy the balance of normal stress.  In fact, fluid mechanical problems involving the application 
of the normal stress balance at a boundary are complicated, and must be solved numerically 
unless one assumes the shape distortion to be very small or of a particularly simple form.  
 
At a liquid-gas interface, we can further simplify the tangential stress balance.  Consider the 
surface of a liquid film flowing down an inclined plane.  Let us assume that the flow is steady 
and that the film surface is parallel to the inclined plane.  In this situation, the normal velocity at 
the free surface of the liquid is zero in both the liquid and the gas.  The sketch depicts the 
situation. 
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Because the normal velocity is zero at the free surface, the tangential stress balance simplifies to 
the following result where the subscripts l  and g  represent the liquid and gas, respectively. 
 

,, x gx l
l g
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µ µ
∂∂

=
∂ ∂

 at the free surface 

 
The symbol µ  in the above result stands for the dynamic viscosity.  If we divide through by the 
dynamic viscosity of the liquid, we obtain 
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  at the free surface 

 
Because the dynamic viscosity of a gas is small compared with that of a liquid, the right side of 
the above equation is small, and can be considered negligible.  This allows us to write 
 

, 0x lv
y

∂
≈

∂
   at the free surface 

 
Sometimes, this condition is represented as that of vanishing shear stress at a free liquid surface.  
Note that this approximation of the tangential stress condition can be used only when the 
motivating force for the motion of the liquid is not the motion of the gas.  When a gas drags a 
liquid along, as is the case on a windy day when the wind causes motion in a puddle of liquid, 
the correct boundary condition equating the tangential stresses must be used.  
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