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When a two-dimensional flow is incompressible, so that the equation of continuity reduces to 

0∇• =v , where v  represents the vector velocity field, it is sometimes advantageous to define a 
scalar field termed the streamfunction. It is typically represented by the symbol ψ .   Commonly, 
one solves the governing equation for the single variable ψ , along with the associated boundary 
conditions, instead of solving the Navier-Stokes and continuity equations for the velocity and 
pressure fields.  Once the streamfunction field ψ  is determined, it is possible to infer the velocity 
components and the pressure distribution.  The price to be paid for this simplification is that the 
streamfunction satisfies a fourth-order partial differential equation, in contrast with the Navier-
Stokes equation, which is a second order partial differential equation for the velocity field. 
 
In this brief document, we shall learn about the definition and the physical significance of the 
streamfunction.   For further details, the reader should consult a textbook, such as that by Happel 
and Brenner (1973). 
 
Lagrange Streamfunction 
 
When the flow is two-dimensional on a plane (chosen as the x y−  plane in a rectangular cartesian 
coordinate system), the Lagrange streamfunction ψ is related to the velocity field as follows. 

z x yy x
ψ ψψ ∂ ∂

= ∇ × = −
∂ ∂

v i i i  

 
where ,xi ,yi  and zi  are unit vectors in the x , y , and  z − directions, respectively. 
 
When we say “two-dimensional” flow, we mean that the velocity component in the third direction 
is identically zero, and furthermore that the two remaining velocity components are independent 
of the coordinate in that third direction.  In this case, the third direction is the z − direction, so that 

0zv ≡ , and 
z
∂

=
∂

0v . 

Recall that the cross-product of two vectors is perpendicular to the plane containing those two  
vectors.  Thus, from the definition equation for the streamfunction, we infer that the velocity vector 
is perpendicular to the z − direction, and therefore lies on the x y−  plane.  In addition, we also see 
that it must be perpendicular to the vector ψ∇ .  Because ψ∇  is normal to level curves of the 
streamfunction ψ , this implies that the velocity vector must be tangent everywhere to level curves 
of the streamfunction, which are also known as streamlines.  There can be no flow  normal to a 
streamline. 
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We can use the definition of ψ  to infer the relationship between the velocity components and the 
streamfunction.  We can write 

x x y y x yv v
y x
ψ ψ∂ ∂

= + = −
∂ ∂

v i i i i  

so that 
 

x yv v
y x
ψ ψ∂ ∂

= = −
∂ ∂

 

 
Consider incompressible two-dimensional flow over a flat plate as shown below. 
 

 
At a given location x  along the plate, if we integrate the result xv

y
ψ∂

=
∂

 between the solid surface 

and a given y , we obtain 

( ) ( ) ( )
0

, ,0 ,
y

xx y x v x y dyψ ψ= + ∫  

 
Because of the kinematic condition at the solid surface, ψ  is constant along the solid surface, and 
it is customary to assign it a value of zero at that surface.  Thus, 
 

( ) ( )
0

, ,
y

xx y v x y dyψ = ∫  

 
implying that the streamfunction represents the volumetric flow rate per unit width in the x −
direction in this situation.  Note that the constant value assigned to ( ),0xψ is immaterial, because 
only gradients of ψ  matter. 
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Stokes Streamfunction 
 
When a sphere settles in a fluid, the flow it creates is not strictly two-dimensional, but is axially 
symmetric.  Thus, we define a different streamfunction to handle situation like this. 
 
When a flow is symmetric about the z − axis, we can still regard the flow as “two-dimensional” in 
the sense that the velocity component in the azimuthal direction φ  measured around the axis is 

identically zero, and furthermore 
φ
∂

=
∂

0v .  Thus, in analogy with the flow on a plane discussed 

earlier, we can define a streamfunction for axisymmetric flows.  Such a streamfunction also is 
represented by the symbol ψ , but is distinguished from the Lagrange streamfunction by 
designating it the “Stokes streamfunction.” 
 
The sketch below shows the z − axis, along with the azimuthal coordinate φ .  Also shown is a 
cylindrical polar coordinate r , which is the distance measured from the axis. 
 

     
 
The Stokes streamfunction ψ  is related to the velocity vector field v  as follows. 
 

( )1
r φ ψ= ×∇


v i  

 
where φi  is a unit vector in the φ − direction.  Again, recognizing that the cross-product of φi  and 
ψ∇  must be perpendicular to the plane containing them, it is straightforward to infer that the 

velocity field must lie on planes of constant φ , known as meridian planes.  This is logical, because 
the velocity component vφ  is identically zero, and the velocity field is independent of the azimuthal 

φ

r
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coordinate φ . Also, the vector velocity must be tangent to level curves of the Stokes 
streamfunction ψ  on the meridian plane, which are therefore, known as streamlines. 
 
If we select any point on a meridian plane and join it by any curve to the axis, then rotate this curve 
through a complete revolution around the axis (by an angle 2π ), we create a bowl-like surface.  
The volumetric flow rate Q  through this surface is related to the streamfunction at the selected 
point via 2Q πψ= .  The sign convention chosen here is that Q  is measured downward in the 
sketch of the coordinate system displayed earlier. 
 
In a cylindrical polar coordinate system ( ), ,r zθ   the velocity components are related to the 
streamfunction as follows. 
 

1 1
r zv v

r z r r
ψ ψ∂ ∂

= = −
∂ ∂

  

 

 
 
Likewise, the relationship between the Stokes streamfunction and the velocity components rv  and 
vθ  in a spherical polar coordinate system ( ), ,r θ φ  can be inferred.   In this case, noting that the 
distance from the axis in the sketch of the system, sinr r θ= , we obtain 
 

2

1 1
sin sinrv v

r r rθ
ψ ψ

θ θ θ
∂ ∂

= − =
∂ ∂

 

 
To learn more details about the streamfunction, including the partial differential equation and 
typical boundary conditions it satisfies, you can consult Happel and Brenner (1973).  
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