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The failure of potential flow (incompressible irrotational flow) theory to predict drag on objects 
when a fluid flows past them provided the impetus for Prandtl to put forward a theory of the 
boundary layer adjacent to a rigid surface.  Prandtl’s principal assumptions are listed below.   
 
Assumptions 
 
1. When a fluid flows past an object at large values of the Reynolds number, the flow region can 
be divided into two parts.    
 
(i) Away from the surface of the object, viscous effects can be considered negligible, and potential 
flow can be assumed.   
 
(ii) In a thin region near the surface of the object, called the boundary layer, viscous effects cannot 
be neglected, and are as important as inertia.   
 
2. The pressure variation can be calculated from the potential flow solution along the surface of 
the object, neglecting viscous effects altogether, and assumed to be impressed upon the boundary 
layer.  
 

 
 
Transition from laminar to turbulent flow in the boundary layer on a flat plate occurs at  

5Re 5 10x ≈ × , where ( )Re /x xU ν∞= .  Here, ν  is the kinematic viscosity of the fluid. 
 
The assumptions can be used to establish the order of magnitude of the boundary layer thickness. 
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A typical inertia term in the Navier-Stokes equation in rectangular Cartesian coordinates is uu
x

ρ ∂
∂

,  and a typical viscous term is 
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.  Here, ( ),u v  are the velocity components in the ( ),x y  

directions, and ρ  and µ  are the density and the dynamic viscosity of the fluid.  We can estimate 
the order of magnitude of each of these terms for a plate of length L  as follows. 
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Because the viscous force in the boundary layer is of comparable order to the inertia force, these 
two order estimates must be comparable. 
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where the Reynolds number based on the length of the plate ReL
LU
ν

∞= . 

  
This type of argument is called a scaling analysis.  It is a valuable tool in dealing with transport 
problems.  You can see that it provides not only an idea of the variables on which key quantities 
depend, but also the form of this dependence without having to solve the partial differential 
equations involved.   
 
In a like manner, we can find a scale estimate of the drag as well.  The shear stress at the plate 

surface is ( ),0w
u x
y

τ µ ∂
=

∂
.  We can estimate the order of this quantity as ( )w

Uxτ µ
δ
∞= .  Because 

the shear stress is a local quantity, we should use an order of magnitude of the variation of the 
boundary layer thickness δ  with x .  From the order of magnitude argument used earlier, we can 

estimate it as ( )
Rex

x xx
U
νδ

∞

=  .  If the width of the plate in the z − direction is w , the drag 

on the plate surface is given by 
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Ignoring the numerical factor of 2  that appears after performing the integration (because we are 
only estimating the order of magnitude), we can write 
 

3D w U Lρ µ ∞  
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A rigorous calculation from boundary layer theory yields the result 
 

30.664D w U Lρ µ ∞=  
 
confirming the correctness of our scaling argument. 
 
The Displacement Thickness 
 
The displacement thickness of the boundary layer is defined as the distance by which the potential 
flow streamlines are displaced by the presence of the boundary layer.  We can construct a 
mathematical definition in the case of the flat plate by recognizing that the displacement thickness 

1δ  is that thickness of the uniform stream that accounts for the “lost” flow because of the presence 
of the solid surface. 
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Order of magnitude analysis of the continuity and Navier-Stokes Equations 
 
Now, we shall go through an order of magnitude analysis of the two-dimensional Navier-Stokes 
equations for steady incompressible Newtonian laminar flow over a flat plate and simplify them 
using Prandtl’s ideas.  For more details, you can consult Schlichting [1]. 
 
We shall use scaled variables, using L  as a reference length, and U∞  as a reference velocity.  The 
symbols x  and y  are used for the scaled counterparts of the physical coordinates in the sketch, 
and the symbols u  and v  are used for the dimensionless counterparts of the physical velocity 
components in the x  and y  directions, respectively.  The scaled incompressible version of the 
continuity equation is 
 

0u v
x y
∂ ∂

+ =
∂ ∂

 

From the scaling, we know that u  is ( )1O .  This means that the magnitude of u  lies between 0
and a number that is of the order of unity.  In this particular case, because the maximum value of 
the physical velocity is that of the uniform stream approaching the plate, namely U∞ , the maximum 
value of u  is, in fact, precisely 1.  But this is not necessarily the meaning implied by the order 
symbol that we are using.   Note that the order of  magnitude of a quantity is the same regardless 
of its sign. 
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Because the velocity u  varies in the range mentioned above, while the scaled variable x  also 

varies from 0  to 1 (we say ( )1x O ), we can conclude that the derivative u
x
∂
∂

 is ( )1O  as well.  

From the continuity equation, we see that  u
x
∂
∂

 and v
y
∂
∂

 must sum to zero;  this forces the derivative 

v
y
∂
∂

 to be ( )1O .  We know that the variable ( )y O δ  where δ  represents the boundary layer 

thickness divided by the length L .  In other words, δ  is the scaled boundary layer thickness.  

Because the derivative ( )1v O
y
∂
∂
 , we must conclude that the change in the scaled velocity 

component v  across the boundary layer must be of ( )O δ .  We know from the kinematic condition 

that 0v =  at the surface 0y = .  Therefore, the magnitude of v  must of ( )O δ .  We note that δ  is 
a very small quantity when the Reynolds number Re 1.L    We express this fact by stating 1.δ     
Therefore, the scaled velocity in the y −direction in the boundary is a very small quantity. 
 
Now, following Schlichting [1] we proceed to use similar arguments in the two components of the 
Navier-Stokes equation applicable to this situation.  First, consider the x − component. 
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Below each term in the equation, we have written the order of magnitude of that term.   We already 

have discussed the order of magnitude of ,u v , and u
x
∂
∂

.  To estimate the order of magnitude of 

u
y
∂
∂

, we first note that u  varies from 0  to 1 across the boundary layer, while the variable y  varies 

from 0  to δ .  This is the reason for the estimate that 1u O
y δ
∂  

 ∂  
 .  To estimate the order of 

magnitude of the second derivatives, we must use similar arguments.  For example, consider the 

derivative 
2

2

u
x
∂
∂

.  We know that ( )1u O
x
∂
∂
 .  So, this quantity must change from 0  to a magnitude 

of the order of unity in a scaled distance x  that also changes from 0  to 1.  This is the reason for 

estimating the order of 
2

2

u
x
∂
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as being unity.  In a like manner, the derivative 1u O
y δ
∂  

 ∂  
 , which 

means that it varies from 0  to 1/δ  across the boundary layer, in a distance of the order δ .  

Therefore, the second derivative 
2

2 2
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y δ
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 ∂  
 .  The order of magnitude of the Reynolds number 

was established earlier on page 2. 
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Comparing the two viscous terms, we see that the viscous force in the x − direction is negligible 
when compared to that in the y −direction.  We need to retain all the other terms in the x −
component momentum equation because they are all of comparable order of magnitude. 
 
Now, let us consider the y − component of the Navier-Stokes equation. 
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The order of magnitude of the derivatives has been estimated in the same manner as outlined 
earlier.  Once again, we see that the viscous transport of y −momentum in the x − direction is 
much weaker than that in the y −direction, and can be neglected.  The most important aspect of 

the above equation is that all the retained terms are of ( )O δ , so that the pressure gradient p
y
∂
∂

 

must necessarily be of the same order (or smaller).  Because the variation of pressure in the y −
direction in the boundary layer must occur over a distance of ( )O δ , it is evident that the scaled 

pressure change across the thickness of the boundary layer ( )2p O δ∆  .  This is very small, and 
can be ignored, which is Prandtl’s assumption 2 listed on page 1.  Because the pressure change 
across the boundary layer is negligible, the pressure distribution along the surface of the object, 
evaluated from the potential flow, can be assumed to be “impressed” on the boundary layer.   This 

means that p
x
∂
∂

 in the x − component momentum equation is a known inhomogeneity, and we can 

simply ignore the y − component momentum equation because all the terms are small.   
 
Summarizing the above, we have found from the scaling analysis that the viscous term in the main 
direction of flow ( )x  is negligible compared with the viscous term in the direction normal to the 
solid surface.  Furthermore, the pressure gradient in the x − component momentum equation is 
established from potential flow theory and evaluated along the surface of the object, and the y −
component momentum equation is neglected.  Thus, we have two equations for the two unknown 
velocity components. 
 
Even though our analysis assumed a flat plate, you can see that for a thin boundary layer, the 
effects of curvature of the surface would be negligible at leading order. Therefore, as long as we 
define x  and y  as distance coordinates along and normal to a surface, respectively, the same 
equations can be written for flow past an object with a curved surface.  For convenience, Prandtl’s 
steady two-dimensional boundary layer equations for incompressible Newtonian flow are written 
in physical variables below.  To avoid clutter, we have retained the same symbols for the velocities 
and coordinates as those used earlier for scaled variables, but this should not be a source of 
confusion. 
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Continuity 
 

0u v
x y
∂ ∂

+ =
∂ ∂

 

 
Navier-Stokes Equation 
 

2

2

1u u p uu v
x y x y

ν
ρ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
 

 
For the flat plate problem, the potential flow is simply u U∞= .  This means that the potential flow 
pressure gradient is zero.  Therefore, the Navier-Stokes equation simplifies to 

2

2

u u uu v
x y y

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 

The boundary conditions are written as follows. 
 
     ( )0,u y U∞=  

( ),0 0u x =  

( ),0 0v x =  

( ),u x y U∞→∞ →  

Commonly, the last condition is replaced with ( ),u x U∞∞ = . 
 
Note that  
 
1. The important nonlinear (inertial) terms have been retained. 
 
2. The number of differential equations has been reduced from three to two, consistent with the 
simplification that the pressure distribution is “known” from potential flow theory. 
 
3. Because the variation of pressure across the boundary layer is negligible to this order of 
approximation, the potential flow pressure distribution can be evaluated right at the solid surface 
and used as a known inhomogeneity in the boundary layer equations. 
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