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As a good model problem, we consider steady state heat transfer to fluid in steady flow through a 
tube.  The fluid enters the tube at a temperature 0T  and encounters a wall temperature at wT , which 
can be larger or smaller than 0T .  A simple version of this problem was first analyzed by Graetz 
(1883).  A sketch of the system is shown below.       
 
 
 
 
 
 
 
 
 
 
Objective 
 
To obtain the steady temperature distribution ( ),T r z  in the fluid, and to calculate the rate of heat 
transfer from the wall to the fluid 
 
Assumptions 
 
1. Steady fully developed laminar flow; steady temperature field. 
 
2. Constant physical properties , , , pk Cρ µ  -- This assumption also implies incompressible 
Newtonian flow. 

3. Axisymmetric temperature field   0T
ϕ
∂

⇒ ≡
∂

, where we are using the symbol ϕ  for the polar 

angle.  This is because we want to use the symbol θ  to represent dimensionless temperature later. 
 
4. Negligible viscous dissipation 
 

Fluid at

0T

r

z
R

( ), wT R z T=
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Velocity Field 
 
Poiseuille Flow 
 

0; 0rv vϕ= =  
 

( )
2

0 21z
rv r v
R

 
= − 

 
  0 :v  Maximum velocity existing at the centerline 

 
Energy Equation 
 
Subject to assumption (2), Equation (B.9.2) from Bird et al. (page 850) can be written as follows. 
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and therefore, simplified to 
 

2 2

0 2 2

11 r T T Tv r
R z r r r z

α
   ∂ ∂ ∂ ∂ − = +    ∂ ∂ ∂ ∂    

 

 
where ( )/ pk Cα ρ=  is the thermal diffusivity of the fluid. 
 
Boundary Conditions 
 
Inlet:   ( ) 0,0T r T=  
 
Wall:   ( ), wT R z T=  
 
Centerline:  ( )0,T z  is finite  

  or  ( )0, 0T z
r

∂
=

∂
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Because of the appearance of the axial conduction term in the governing differential equation, we 
should write another boundary condition in the z − coordinate.  But actually, the inlet condition 
written above is incompatible with the inclusion of axial conduction in the problem, because 
conduction will lead to some of the information about the step change in wall temperature at the 
inlet to propagate backward.  As we shall see shortly, we’ll neglect axial conduction, which will 
obviate the need for writing a second condition in the z − coordinate. 
 
Non-Dimensionalization 
 
We shall use the following scheme for scaling (or non-dimensionalizing) the variables. 
 

0

w

w

T T
T T

θ −
=

−
 , rY

R
= ,     zZ

R Pe
= ,   where  the Péclet Number 0RvPe

α
= . 

 
This permits us to transform the governing differential equation and boundary conditions to the 
following form. 
 

( )
2

2
2 2

1 11 Y Y
Z Y Y Y Pe Z
θ θ θ∂ ∂ ∂ ∂ − = + ∂ ∂ ∂ ∂ 

 

 
     ( ),0 1Yθ =  

     ( )1, 0Zθ =  

     ( )0, Zθ  is finite 

or ( )0, 0Z
Y
θ∂

=
∂

 

 
The Péclet Number 
 
The Péclet number plays the same role in heat transport as the Reynolds number does in fluid 
mechanics.  First, we note that the Péclet number is the product of the Reynolds and Prandtl 
numbers. 
 

0 0 Re PrRv RvPe ν
α ν α

= = × = ×  

 
The physical significance of the Péclet number can be inferred by recasting it slightly. 

 
0 Rate of energy transport by convection

Rate of energy transport by conduction
pv C T

Pe Tk
R

ρ ∆
= =

∆
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Note that the numerator represents the order of magnitude of the convective flux in the main flow 
direction, whereas the denominator stands for the order of magnitude of the conduction flux in the 
radial direction.  If we wish to compare the rates of energy transport by these two mechanisms in 
the same direction, we can multiply the Péclet number by /L R  where L  is a characteristic length 
in the axial direction. 

For large values of Pe , we can see that 2

1 1
Pe

 .  Therefore, in the scaled energy equation, the 

term involving axial conduction can be safely neglected.  Physically, there are  two mechanisms 
for transporting energy in the axial direction, namely, convection and conduction.  Because the 
Péclet number is large, we are able to neglect transport by conduction in comparison with transport 
by convection.  On the other hand, in the radial direction, there is only a single mechanism for 
transport of energy, namely conduction.  By performing calculations including conduction in the 
axial direction, it has been established that it is safe to neglect axial conduction for 100.Pe ≥    To 
learn about how to include axial conduction, you can consult the articles by Davis (1973), Acrivos 
(1980), and Papoutsakis et al. (1980).  
 
Let us make a sample calculation of the Péclet number for laminar flow heat transfer in a tube.   

The thermal diffusivity of common liquids is typically in the range 
2

7 710 2 10 m
s

− −− × , and we’ll 

use the larger limit.  Choose 
 

2
7

010 , 0.05 , 2 10m mR mm v
s s

α −= = = ×  

 
This yields, 2,500Pe = , which is much larger than 100.  We can check to see if the flow is laminar 

by calculating the Reynolds number.  If the fluid is water, 
2

610 m
s

ν −≈ , which yields a Prandtl 

number Pr 5ν
α

= = .  Therefore, the Reynolds number is Re 500= , which is comfortably in the 

laminar flow regime.   
 
The final version of the scaled energy equation is  
 

( )2 11 Y Y
Z Y Y Y
θ θ∂ ∂ ∂ − =  ∂ ∂ ∂ 

 

 
We can solve this equation by separation of variables, because the boundary conditions in the Y −
coordinate are homogeneous.  The method of separation of variables yields an infinite series 
solution for the scaled temperature field. 

( ) ( )2

1
, n Z

n n
n

Y Z A e Yλθ φ
∞

−

=

=∑  
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In the above solution, the functions ( )n Yφ  are the characteristic functions or eigenfunctions of a 
proper Sturm-Liouville system. 
 

( )2 21 1 0d dY Y
Y dY dY

φ λ φ  + − = 
 

 

 

( ) ( )0 0 or 0d
dY
φ φ= is finite 

( )1 0φ =  
 
The above ordinary differential equation for ( )Yφ  can be solved by applying the following 
transformations to both the dependent and the independent variables (Lauwerier, 1951, Davis, 
1973). 

( ) ( )2 2
X

X Y W X e Yλ φ= =  
 
This leads to the following differential equation for ( )W X . 
 

( )
2

2

11 0
4 2

d W dWX X W
dX dX

λ + − + − = 
 

 

 
This is known as Kummer’s equation.   It has two linearly independent solutions, but only one is 
bounded at 0.X =   Because ( )0φ  must be bounded, we must require that ( )0W  also remain 
bounded.  This rules out the singular solution, leaving us with the regular solution 

 

( ) 1 , 1,
2 4

W X c M Xλ = − 
 

 

where c  is an arbitrary multiplicative constant. The function ( ), ,M a b X  is the confluent 
hypergeometric function, or Kummer function, and is discussed in Chapter 13 of the “Handbook 
of Mathematical Functions” by M. Abramowitz and I. A. Stegun,  It is an extension of the 
exponential function, and is written in the form of the following series. 

( ) ( )
( )

( ) ( )
( ) ( )

21
, , 1

1 2!

1 1
1 1 !

n

a aa XM a b X X
b b b

a a a n X
b b b n n

+
= + + +

+

+ + −
+ +

+ + −









 

You can see that when a b= ,  
 

( ), , XM a a X e=  
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Application of the boundary condition at the tube wall, ( )1 0φ = , leads to the following 
transcendental equation for the eigenvalues. 
 

1 , 1, 0
2 4

M λ λ − = 
 

 

 
The above equation has infinitely many discrete solutions for λ , which we designate as nλ , with 
n  assuming positive integer values beginning from 1.  Corresponding to each value nλ , there is 
an eigenfunction ( )n Yφ  given by 

( ) ( )
2

22
nY

n n nY e W Y
λ

φ λ
−

=  
 
The first few eigenvalues are reported in the table. 
 

n  
nλ  2

nλ  
1 2.7044 7.3136 
2 6.6790 44.609 
3 10.673 113.92 
4 14.671 215.24 
5 18.670 348.57 

Note that technically { }2
nλ  is the set of eigenvalues, even though we use the term loosely to 

designate { }nλ as that set for convenience.  
 
The most important property of a proper Sturm-Liouville system is that the eigenfunctions are 
orthogonal with respect to a weighting function that is specific to that system.  In the present case, 
the orthogonality property of the eigenfunctions can be stated as follows. 
 

( ) ( ) ( )
1

2

0

1 0,m nY Y Y Y dY m nφ φ − = ≠∫  

 
Using this orthogonality property, it is possible to obtain a result for the coefficients in the solution 
by separation variables. 
 

( ) ( )

( ) ( )

1
2

0
1

2 2

0

1

1

n

n

n

Y Y Y dY
A

Y Y Y dY

φ

φ

−
=

−

∫

∫
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The Heat Transfer Coefficient 
 
The heat flux from the wall to the fluid, ( )wq z  is a function of axial position.  It can be calculated 
directly by using the result 
 

( ) ( ),w
Tq z k R z
r

∂
=

∂
 

but as we noted earlier, it is customary to define a heat transfer coefficient ( )h z  via 
 

( ) ( )( )w w bq z h z T T= −  
 
where the bulk or cup-mixing average temperature bT  is introduced.   The way to experimentally 
determine the bulk average temperature is to collect the fluid coming out of the system at a given 
axial location, mix it completely, and measure its temperature.  The mathematical definition of the 
bulk average temperature was given in an earlier section. 
 

( )
0

0

2 ( ) ,

2 ( )

R

b R

rV r T r z dr
T

rV r dr

π

π
=
∫

∫
 

 
where the velocity field ( ) ( )2 2

0 1 /V r v r R= − .  You can see from the definition of the heat transfer 
coefficient that it is related to the temperature gradient at the tube wall in a simple manner. 

( )
( )

( )

,

w b

Tk R z
rh z

T T

∂
∂=

−
 

 
We can define a dimensionless heat transfer coefficient, which is known as the Nusselt number. 

( )
( )
( )

1,2 2
b

ZhR YNu Z
k Z

θ

θ

∂
∂= = −  

where bθ  is the dimensionless bulk average temperature. 
By substituting from the infinite series solution for both the numerator and the denominator, the 
Nusselt number can be written as follows. 
 



8 
 

( )
( )

( ) ( )

2

2

1
1

2
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2
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n

n
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n

n
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n

dA e
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A e Y Y Y dY

λ

λ

φ

φ

∞
−

=
∞

−

=

= −
−

∑

∑ ∫
 

 
The denominator can be simplified by using the governing differential equation for ( )n Yφ , along 
with the boundary conditions, to finally yield the following result. 

( )

( )

2

2
1

2
1

1

2 1

n

n

Z n
n

n
Z

n
n

n n

dA e
dYNu

deA
dY

λ

λ

φ

φ
λ

∞
−

=
−∞

=

=
∑

∑
 

 
We can see that for large Z , only the first term in the infinite series in the numerator, and likewise 
the first term in the infinite series in the denominator, is important.  Therefore, as Z →∞ , 

2
1 3.656
2

Nu λ
→ = . 

 
The sketch qualitatively illustrates the behavior of the Nusselt number as a function of 
dimensionless axial position. 
 
 

 
 
 
A similar analysis is possible in the case of a uniform wall flux boundary condition.  Extensions 
of the Graetz solution by separation of variables have been made in a variety of ways, 
accommodating non-Newtonian flow, turbulent flow, and other geometries besides a circular tube. 

3.656

Nu

Dimensionless Axial Position Z0
0
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The Lévêque Approximation 
 
 The orthogonal function expansion solution obtained above is convergent at all values of the axial 
position, but convergence is very slow as the inlet is approached.  The main reason for this is the 
assistance provided by 

2
n Ze λ−  in accelerating convergence for sufficiently large values of Z .  

Lévêque (1928) considered the thermal entrance region in a tube and developed an alternative 
solution, which is useful precisely where the orthogonal function expansion converges too slowly.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We shall now construct the Lévêque solution which is built on the assumption that the thickness 
of the thermal boundary layer t Rδ  .  This assumption leads to the following simplifications. 
 
1. Curvature effects can be neglected in the radial conduction term.  This means that the derivative  
1 Tr
r r r
∂ ∂ 
 ∂ ∂ 

 can be approximated by 
2

2

1 T TR
R r r r

∂ ∂ ∂  = ∂ ∂ ∂ 
. 

 
2. Because we are only interested in the velocity distribution within the thermal boundary layer, 
we expand the velocity field in a Taylor series in distance measured from the tube wall and retain 
the first non-zero term. 
 
Defining x R r= − , we can rewrite the velocity distribution as 
 

( ) ( )2 2

0 0 02 21 2 2z

R x x x xv r v v v
R R R R

 −  
= − = − ≈       

 

 
Recall that a power series obtained by any method is a Taylor series.  The above approach is 
simpler than working out the derivatives of ( )zv r  in the x − coordinate, evaluating them at the 
wall, and constructing the Taylor series. 
 

Fluid at

0T

r

z
R

( ), wT R z T=

tδ
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3. Because the conditions outside the thermal boundary layer are those in the fluid entering the 
tube, we shall use the boundary condition ( ) 0T x T→∞ →  instead of the centerline boundary 
condition employed in obtaining the Graetz solution. 
 
Beginning with the simplified energy equation in which axial conduction has been neglected 
already, and invoking the above assumptions, we have the following governing equation for the 
temperature field. 
 

 
2

0 22 x T Tv
R z x

α∂ ∂
=

∂ ∂
 

 
where the chain rule has been used to transform the second derivative in r  to the second derivative 
in x .    
 
The temperature field ( ),T x z  satisfies the following boundary conditions. 

  ( ) 0,0T x T=  

  ( )0, wT z T=  

( ) 0,T z T∞ =  
We shall work with a dimensionless version of these equations.  For consistency, we scale the 
temperature and axial coordinate in the same manner as before. 
 

0

w

w

T T
T T

θ −
=

−
  zZ

R Pe
=  

 
We define a new scaled distance from the wall via /X x R= .  The scaled governing equation and 
boundary conditions are given below. 
 

2

22X
Z X
θ θ∂ ∂
=

∂ ∂
 

 
( ),0 1Xθ =  

( )0, 0Zθ =  

( ), 1Zθ ∞ =  
 
The similarity of this governing equation and boundary conditions to those in the fluid mechanical 
problem in which we solved for the velocity distribution between two plates when one of them is 
held fixed and the other is moved suddenly is not a coincidence.   For small values of time in the 
fluid mechanical problem, we replaced the boundary condition at the top plate with one at an 
infinite distance from the suddenly moved plate, and used the method of combination of variables 
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to solve the equations.  It would be worthwhile for you to go back and review the notes on 
“combination of variables” at this stage. 
 
By invoking ideas very similar to those used in the fluid mechanical problem, we postulate that a 
similarity solution exists for the temperature field in the present problem.  That is, we assume 
( ) ( ),X Z Fθ η=  where the similarity variable ( )/X Zη δ=  .  The variable ( )Zδ  represents the 

scaled thermal boundary layer thickness, and is unknown at this stage.  We make the necessary 
transformations using the chain rule. 
 

2

dF X d dF d dF
Z Z d dZ d dZ d
θ η δ η δ

η δ η δ η
∂ ∂  = = − = − ∂ ∂  

 

 
1dF dF

X X d d
θ η

η δ η
∂ ∂

= =
∂ ∂

 

 

( )
2 2

2 2 2

1 1 1 1dF dF d dF d F
X X Z d X d X d d d
θ η

δ η δ η δ η η δ η
     ∂ ∂ ∂ ∂

= = = =     ∂ ∂ ∂ ∂    
 

 
Using these results, the partial differential equation for ( ),X Zθ  is transformed to an ordinary 

differential equation for ( )F η . 
 

2
2 2

2 2 0d F d dF
d dZ d

δη δ
η η

 + = 
 

 

 
It is evident that the similarity hypothesis will fail unless the quantity inside the parentheses is 
required to be independent of Z , and therefore, a constant.  For convenience, we set this constant 
to 3/2.  Therefore, we have an ordinary differential equation for ( )F η  and another for ( )Zδ . 
 

2
2

2 3 0d F dF
d d

η
η η

+ =  

 
2 3

2
d
dZ
δδ =  

 
To derive the boundary conditions on these functions, we must go to the boundary conditions on 
( ),X Zθ .  In a straightforward way, we see that ( )0, 0Zθ =  yields ( )0 0F = , and ( ), 1Zθ ∞ =  

leads to ( ) 1F ∞ = .  The remaining (inlet) condition gives 
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( ) ( )
,0 1

0
XX Fθ

δ
 

= =  
 

 

 
By choosing ( )0 0δ = , this condition collapses into the condition ( ) 1F ∞ =  obtained already from 
the boundary condition on the scaled temperature field as X →∞ . Summarizing the boundary 
conditions on ( )F η  and ( )Zδ , we have 

( ) ( )0 0, 1F F= ∞ = , and  

( )0 0δ =  

Integration yields the following solution for the scaled boundary layer thickness ( )Zδ . 
 

( )
1/39

2
Z Zδ  =  

 
 

 
The solution for ( )F η  is 

( ) ( )

3

3

3

0

0

0

1
4 / 3

e d
F e d

e d

η
γ

η
γ

γ

γ
η γ

γ

−

−
∞

−

= =
Γ

∫
∫

∫
 

 
Here, ( )xΓ  represents the Gamma function, discussed in the “Handbook of Mathematical 

Functions” by Abramowitz and Stegun.  The numerical value of ( )4 / 3 0.89298Γ ≈ , so that we 

can write ( )1/ 4 / 3 1.1199Γ ≈  or roughly 1.120. 
 
Heat Transfer Coefficient 
 
In the thermal entrance region, when the thermal boundary layer is thin, we can approximate the 
bulk average temperature bT  by the temperature of the fluid entering the tube 0T .  Therefore, we 
define the heat transfer coefficient in this entrance region by 
 

( ) ( )0,w w
Tq k R z h T T
r

∂
= = −

∂
 

 
Transforming to dimensionless variables, and defining a Nusselt number 2 /Nu hR k= , we can 
write 
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( ) ( ) ( ) ( )22 0, 0dFNu Z Z
X Z d
θ

δ η
∂

= =
∂

 

 

By substituting for ( )Zδ  and ( )0dF
dη

, we obtain the following approximate result for the Nusselt 

number in the thermal entrance region. 
 

( )
1/3

1/31.357 RNu Z Pe
z

 ≈  
 

 

 
Comparison with the exact solution shows this result is a good approximation in the range  
 

2500 50
Pe z Pe

R
 ≤ ≤ 
 
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