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Based on observation, one can postulate the idea that mass is neither created nor destroyed.  In 
other words, it is conserved. This is termed the Principle of Conservation of Mass.  This principle 
is applied to a fixed volume of arbitrary shape in space that contains fluid.  This volume is called 
a “Control Volume.”  Fluid is permitted to enter or leave the control volume.  
 
A control volume V  is shown in the sketch. 
 

    
 
Also marked on the sketch is the bounding surface S of this control volume, called the control 
surface; an element of surface area dS  and the unit outward normal (vector) to that area element, 
n  are shown as well. The vector symbol dSdS = n  is used to represent a directed differential 
area element on the surface.   
 
Just like the principle of conservation of mass, one can make similar statements about energy and 
momentum, being careful to accommodate ways in which energy or momentum can enter or leave 
a fixed volume in space occupied by a fluid.  These conservation statements are put in 
mathematical form and termed “integral balances.”  These balances are useful in a variety of 
problems.  Here, we shall apply the principle of conservation of mass to the control volume shown 
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in the sketch, and eventually obtain a partial differential equation commonly known as the 
continuity equation.  We begin with a verbal statement of the principle of conservation of mass. 
 
Rate of increase of mass of material within the control volume = Net rate at which mass 
enters the control volume. 
 
Let us write a mathematical representation of the above statement.  To determine the rate of 
accumulation of mass in the control volume, we begin with the mass content in the differential 
volume element dV , because the density ρ  of the fluid can depend on position.  Multiplying the 
differential volume by the density at that location gives the amount of mass in the differential 
volume element, and the total mass M  in the control volume V  is obtained by integrating this 
product over the entire control volume.  Therefore, 

V

M dVρ= ∫   

The time rate of change of this mass content in the control volume is /dM dt .  Because the control 
volume is fixed in space, the time derivate can be taken inside the integral and becomes a partial 
derivate in time, obtained when keeping spatial coordinates fixed.  Thus, the left side in the verbal 

statement of the principle of conservation of mass is  
V

dV
t
ρ∂
∂∫ , where t  represents time. 

 
Now, we need to develop a result for the net rate of entry of mass into the control volume through 
the control surface.  For this, we consider the differential area element dS .  Now, let us define the 
mass flux through space as the vector MN .  Then the rate of entry of mass into the control volume 
through the area element dS  is ( )M dS− •N n , which is ( )M− •N dS .  The total rate of entry of 

mass over the entire surface can be written as the integral ( )M
S

− •∫ N dS .  This is the right side in 

the verbal statement of the principle of conservation of mass.  Equating the two sides yields the 
following result. 
 

M
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dV
t
ρ∂

= − •
∂∫ ∫ N dS    or  0M
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dV
t
ρ∂

+ • =
∂∫ ∫ N dS   

 
A theorem that applies to vector fields permits us to convert a surface integral such as the one in 
the above equation into a volume integral.  It is known as the Gauss divergence theorem or Green’s 
theorem.  The vector field must satisfy conditions regarding continuity of derivatives, and all the 
fields that we encounter are assumed to satisfy these conditions.  Using this theorem, we can write 
the following result. 
 

( )M M
S V

dV• = ∇•∫ ∫N dS N   
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Using this equality, we can rewrite the principle of conservation of mass as 
 

0M
V

dV
t
ρ∂ + ∇• = ∂ ∫ N   

 
We wish to conclude that at every point in the fluid, the integrand of the above result must be zero.  
To do this we need to use two important ideas.  One is that our control volume is arbitrary in shape 
and location. The second is that the fields ρ , MN , and their derivatives are all continuous 
functions of position.  Thus, the integrand is a continuous function of position.  This means that if 
the integrand is non-zero at any point in space, we are guaranteed a neighborhood of that point in 
which it retains the same sign.  Then, we can consider that specific neighborhood the control 
volume, in which case the integral will be non-zero, violating the integral balance stated above.  
This precludes the integrand being non-zero anywhere in the fluid.  Thus, it must be zero at every 
point in the fluid. 
 

0Mt
ρ∂

+ ∇• =
∂

N  

 
The mass flux is the product of the density and the volume flux, which is the velocity. 
 

M ρ=N v   
 
Substituting this result in the partial differential equation yields the continuity equation. 
 

( ) 0
t
ρ ρ∂

+ ∇• =
∂

v   

 
By working out the divergence of the product, we can rewrite this as 
 

( ) 0
t
ρ ρ ρ∂

+ •∇ + ∇• =
∂

v v   

 
It is common practice to combine the first two terms in the left side and write the result as the 
material derivative of density with respect to time. 
 
d
dt t
ρ ρ ρ∂

= + •∇
∂

v   

Bird et al. (1) use the symbol D
Dt
ρ  for the material derivative.  We shall use d

dt
ρ in our work.  The 

material derivative is the time derivative taken while keeping the material coordinates fixed.  
Physically, this means that it is the time derivative obtained while moving with a material particle, 
i.e. moving with the flow. 
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Thus, the continuity equation is rewritten as 
 

( ) 0d
dt
ρ ρ+ ∇• =v   

 
The assumption of incompressible flow, implying that the density of an element of fluid does not 
change with a change in pressure, is used commonly. With this assumption, the continuity equation 
reduces to 
 

0∇• =v   
 
In rectangular Cartesian coordinates ( ), ,x y z  this is written as follows. 
 

0yx z
vv v

x y z
∂∂ ∂

+ + =
∂ ∂ ∂

  

 
Appropriate representations in other coordinate systems can be found in textbooks such as that by 
Bird et al. (1). 
 
The Assumption of Incompressible Flow 
 
Incompressible flow implies that the variation in the density of an element of fluid due to changes 
in pressure can be considered negligible.  Because pressure variations are encountered in fluids, 
one might wonder about the limits on the validity of this assumption.  Liquids are virtually 
incompressible, displaying very small variations in density in response to pressure changes, so that 
incompressible flow is almost always an excellent assumption in liquids.  Gases, on the other hand, 
undergo a significant density change when the pressure is changed. In the flow of gases, the 
assumption of incompressible flow can be used so long as 
 

1ρ
ρ
∆

   

  
where ρ∆  represents a typical change in density encountered in the flow, and the symbol   stands 
for “much less than.” 
 
As shown in pages 9-11 of Schlichting (2) this condition implies that the square of the ratio of a 
characteristic velocity in the fluid 0v  to the speed of sound c  in the fluid, is much less than unity. 
 

2
0 1v
c

 
 
 

   
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The Mach number M  is defined as  
 

0vM
c

=   

 
so that the requirement is that 2 1.M    In practical terms, this means that the assumption of 
incompressible flow in a gas is good so long as the Mach number is relatively small, that is, so 
long as the typical flow velocities are much smaller than the speed of sound in the fluid. 
 
A more detailed discussion of the conditions for the validity of the assumption of incompressible 
flow, accounting also for thermal expansion, can be found in pages 167-171 of Batchelor (3). 
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