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As discussed in the textbook, heat exchangers are used widely in the chemical process industries.  
Typically, two streams flow through the heat exchanger, and heat is transferred from the hot 
stream to the cold stream.  The hot stream enters the heat exchanger at a relatively high 
temperature, and leaves it at a lower temperature, transferring heat to the cold stream, which 
enters at a relatively low temperature, and leaves the exchanger at a higher temperature. In the 
analysis presented here, we consider steady state operation, and we assume that the heat lost to 
the surroundings is negligible compared with the rate at which heat is exchanged between the 
two streams, labeled the heat load Q .  While there are numerous ways of arranging the flow of 
each stream through the heat exchanger, for modeling purposes we simplify these to two possible 
patterns.  One is termed a cocurrent heat exchanger, while the other is termed a countercurrent 
heat exchanger.   In the cocurrent mode, both the hot and cold streams enter the heat exchanger 
at one end, and leave at the opposite end.  In the countercurrent mode, the streams enter at 
opposite ends of the heat exchanger. The two modes are illustrated below. 

   
 
 

   
 
In the sketches, the symbols Cm  and Hm  represent the mass flow rates of the cold and hot 
streams, respectively.  The symbols used for the incoming and outgoing temperatures of the two 
streams are self-explanatory, with the subscript C  representing the cold stream and the subscript 
H representing the hot stream.   
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Qualitative sketches of the temperature distributions in each mode are provided below. 
 

 
 
 
In both cases, note that the hot fluid at any axial location in the heat exchanger is at a higher 
temperature than the cold fluid.  In the cocurrent mode, the temperature difference T∆  is largest 
where the two streams enter the heat exchanger, and decreases to its smallest value at the other 
end. The actual rate of change in T∆  will be governed by local heat exchange rates.  In the 
countercurrent mode, the temperature difference does not vary as much along the heat exchanger 
as in the cocurrent mode.   In the countercurrent mode, T∆  can be larger at either end, whereas 
in a cocurrent heat exchanger it is always largest at the entry point of the hot and cold streams. 
 
Steady State Energy Balance 
 
For both modes of operation, we can write a steady state energy balance as follows. 
 

( ) ( ), , , ,
ˆ ˆ ˆ ˆ

C C out C in H H in H outQ m H H m H H= − = −   

 
Here, Ĥ  stands for the enthalpy per unit mass of each stream, and the subscripts H  and C  
represent the hot and cold streams, respectively.  As noted earlier, we have assumed that all the 
energy leaving the hot stream per unit time enters the cold stream, and neglect heat loss to the 
surroundings. 
 
Because the enthalpy is a function of pressure p  and temperature T , we can write the following 
result for a differential change in enthalpy. 
 

ˆ ˆˆ
p T

H HdH dT dp
T p

   ∂ ∂
= +   

∂ ∂   
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The rate of change of enthalpy with pressure at constant temperature can be assumed to be 
negligible, so that we can approximate the above relationship by 
 

ˆˆ
p

p

HdH dT c dT
T

 ∂
= = 

∂ 
 

where pc  is the specific heat of the fluid in the stream at constant pressure.  Neglecting small 
variations in the specific heat between the incoming and outgoing streams (using an average 
value if needed), we can rewrite the steady state energy balance as follows. 
 

( ) ( ), , , , , ,C p C C out C in H p H H in H outQ m c T T m c T T= − = −   
 
We now define flow thermal capacities ,C C p CC m c=   for the cold stream and ,H H p HC m c=   for the 
hot stream and cast the steady state energy balance as 
 

( ) ( ), , , ,C C out C in H H in H outQ C T T C T T= − = −  

 
Steady State Rate Equation 
 
Now, we proceed to develop a rate equation for a heat exchanger.   Note that the temperature 
difference T∆ , which is the driving force for heat transfer, varies along the length of the heat 
exchanger.  We would like to be able to write 
 

mQ UA T= ∆  
 
where U  is an average overall heat transfer coefficient, A  is the area of the heat transfer surface, 
and mT∆  is some type of average value of the temperature difference T∆ .  But what is this 
average?  To answer this question, we must perform a detailed analysis.  We do this for the 
cocurrent mode below.  
 
Rate Equation for a Cocurrent Heat Exchanger 
 
We begin with a sketch showing the temperatures of the two streams at the ends of a cocurrent 
heat exchanger.  For convenience in the analysis, the left end is identified with the subscript 0 , 
and the right end with the length of the heat exchanger, L .  The coordinate along the length of 
the heat exchanger is x , which varies from 0  to L . 
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If we take an elemental section of the heat exchanger that is sketched below,  
 

   
 
 
we can write 
 

( ) ( ) ( ) ( )C C C H H HQ C T x x T x C T x x T x∆ = + ∆ − = − + ∆ −        
 
Note the difference in signs for the hot and cold fluids.  By definition, the change Q∆  is 
assumed positive.  The cold fluid and hot fluid both enter at the left end.  As the cold fluid 
proceeds along the length of the heat exchanger, it gains heat so that its temperature increases 
with increasing x .  Therefore, ( )CT x x+ ∆  is larger than ( )CT x .  In contrast, the hot fluid is 
losing heat as it flows along the length of the heat exchanger, so that its temperature decreases 
with increasing x .  This means that ( )HT x x+ ∆  is smaller than ( )HT x , and we must introduce a 
minus sign in front of the expression to obtain a positive value for Q∆ . You can understand this 
also by examining the qualitative temperature profiles that we sketched earlier.  In contrast to a 
cocurrent heat exchanger, for one operating in the countercurrent mode, both the hot and cold 
fluid temperatures increase with increasing x , and we would use a positive sign for both the hot 
and cold fluid energy changes in the result for Q∆ . 
 
The rate equation at this location in the heat exchanger is   
 

 

 
where P  is the perimeter of the heat transfer surface, so that the heat transfer area in this 
elemental section is A P x∆ = ∆ .  In the analysis, we shall assume P  to be constant along the 
length of the heat exchanger.  Equating the results for Q∆ from the energy balance for the cold 
stream and the rate equation, we obtain 
 

( ) ( ) ( )H C C C CUP x T T C T x x T x∆ − = + ∆ −    

Hm
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Divide throughout by CC x∆ , and take the limit as 0x∆ → . 
 

( ) ( ) ( )
0

C C
H C

x C

T x x T x UP T T
x CLimit

∆ →

+ ∆ − 
= − ∆ 

 

 
which becomes the following differential equation. 
 

( )C
H C

C C

dT UP UPT T T
dx C C

= − = ∆     (1) 

 
where the temperature driving force H CT T T∆ = −  at any given location in the heat exchanger. 
 
In a like manner, we can write 
 

( ) ( ) ( )H C H H HUP x T T C T x x T x∆ − = − + ∆ −    
 
and go through the same process to obtain the differential equation 
 

( )H
H C

H H

dT UP UPT T T
dx C C

= − − = − ∆     (2) 

 
Now, subtract Equation (1) from Equation (2).  Recognizing that ( ) ( )/ /H Cd T T dx d T dx− = ∆  , 
we obtain 
 

( ) 1 1

C H

d T
UP T

dx C C
∆  

= − + ∆ 
 

 

 
This is a differential equation for the rate of change of the temperature driving force along the 
length of the heat exchanger.  Treating the overall heat transfer coefficient U  as a constant along 
the length of the heat exchanger, we can integrate this equation between the two ends of the heat 
exchanger as follows. 
 

( )
0 0

1 1 1 1 1 1LT L

C H C H C HT

d T
UP dx UPL UA

T C C C C C C

∆

∆

∆      
= − + = − + = − +     ∆      

∫ ∫  

 
where the product PL  is the total heat transfer area A , and 0T∆  and LT∆  are the values of the 
driving force T∆  at the two ends of the heat exchanger.  The integral on the left side of the 
above equation is seen to be ( )0ln /LT T∆ ∆  so that our result can be recast as follows. 
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0

1 1ln L

C H

T UA
T C C

   ∆
= − +   ∆   

    (3) 

 
From the steady state energy balance, we can also write the heat load as 
 

( ) ( ), ,0 ,0 ,C C L C H H H LQ C T T C T T= − = −  
 
Therefore,  
 

( ) ( ) ( ) ( )

[ ]
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1
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T T T T T T T T
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T T
Q

   + = − + − = − − − −   

= − ∆ − ∆
 

Let us substitute this result for the sum 1 1

C HC C
+  in Equation (3). 

[ ]0
0

1 1ln L
L

C H

T UAUA T T
T C C Q

   ∆
= − + = ∆ − ∆   ∆   

 

 
Rewrite this result as 
 

( )0

0

ln

L

L

T T
Q UA

T
T

∆ − ∆
=

 ∆
 ∆ 

 

or 

lmQ UA T= ∆   where ( ) ( )0 0/ ln /lm L LT T T T T∆ = ∆ − ∆ ∆ ∆ .   Thus, we find that the heat load of 
the heat exchanger can be obtained from a simple rate equation that uses a constant overall heat 
transfer coefficient and the area of the heat exchanger by employing an average temperature 
driving force that happens to be the log-mean of the values of the driving force at the two ends of 
the heat exchanger. 
 
It is reasonable to assume that the overall heat transfer coefficient has a single average value 
throughout the heat exchanger, as we did in this analysis.  This is adequate in most situations.  If 
the overall heat transfer coefficient varies significantly along the length of the heat exchanger, its 
variation can be accommodated in the analysis.  
  
From the homework assignment, you’ll learn that precisely the same rate equation is obtained in 
the countercurrent mode of operation.  By spreading out the driving force more evenly across the 
heat exchanger, the countercurrent mode results in a larger log-mean average driving force, all 
else being the same.  Therefore, the countercurrent mode of operation will require a smaller heat 
transfer surface area, and therefore, it is almost always the preferred mode. 
 


