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Shell-and-tube heat exchangers are used widely in the chemical process industries, especially in 
refineries, because of the numerous advantages they offer over other types of heat exchangers.  A 
lot of information is available regarding their design and construction.  The present notes are 
intended only to serve as a brief introduction.   
 
For detailed information about analyzing and designing shell-and-tube heat exchangers, consult 
“The Chemical Engineers’ Handbook”  (http://www.knovel.com/knovel2/Toc.jsp?BookID=48 ) 
(Chapter 11) or any of a variety of sources on heat exchanger design.  Mechanical standards for 
shell-and-tube heat exchangers are set by TEMA (Tubular Exchangers Manufacturers 
Association) and these supplement the ASME code for such heat exchangers. API (American 
Petroleum Institute) Standard 660 supplements both of these standards, and chemical and 
petroleum companies also have their own internal standards in addition. 
 
Advantages 
 
Here are the main advantages of shell-and-tube heat exchangers (Thanks to Professor Ross 
Taylor for this list). 
 
1. Condensation or boiling heat transfer can be accommodated in either the tubes or the shell, 
and the orientation can be horizontal or vertical.  You may want to check out the orientation of 
the heat exchanger in our laboratory.  Of course, single phases can be handled as well. 
 
2.  The pressures and pressure drops can be varied over a wide range. 
 
3. Thermal stresses can be accommodated inexpensively. 
 
4. There is substantial flexibility regarding materials of construction to accommodate corrosion 
and other concerns.  The shell and the tubes can be made of different materials. 
 
5. Extended heat transfer surfaces (fins) can be used to enhance heat transfer. 
 
6. Cleaning and repair are relatively straightforward, because the equipment can be dismantled 
for this purpose. 
 
Basic considerations 
 
The tube side is used for the fluid that is more likely to foul the walls, or more corrosive, or for 
the fluid with the higher pressure (less costly).  Cleaning of the inside of the tubes is easier than 
cleaning the outside.  When a gas or vapor is used as a heat exchange fluid, it is typically 
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introduced on the shell side.  Also, high viscosity liquids, for which the pressure drop for flow 
through the tubes might be prohibitively large, can be introduced on the shell side. 
 
The most common material of construction is carbon steel.  Other materials such as stainless 
steel or copper are used when needed, and the choice is dictated by corrosion concerns as well as 
mechanical strength requirements.  Expansion joints are used to accommodate differential 
thermal expansion of dissimilar materials. 
 
Heat transfer aspects 
 
The starting point of any heat transfer calculation is the overall energy balance and the rate 
equation.  Assuming only sensible heat is transferred, we can write the heat duty Q  as follows. 
 

( ) ( ), , , , , ,hot p hot hot in hot out cold p cold cold out cold inQ m C T T m C T T= − = −  
 

lmQ UA F T= ∆  
 
The various symbols in these equations have their usual meanings.  The new symbol F  stands 
for a correction factor that must be used with the log mean temperature difference for a 
countercurrent heat exchanger to accommodate the fact that the flow of the two streams here 
is more complicated than simple countercurrent or cocurrent flow.  Consider the simplest 
possible shell-and-tube heat exchanger, called 1-1, which means that there is a single shell “pass” 
and a single tube “pass.”   The sketch schematically illustrates this concept in plan view.  Note 
that the contact is not really countercurrent, because the shell fluid flows across the bank of 
tubes, and there are baffles on the shell side to assure that the fluid does not bypass the tube 
bank.  The entire bundle of tubes (typically in the hundreds) is illustrated by a single line in the 
sketch.  The baffle cuts are aligned vertically to permit dirt particles settling out of the shell side 
fluid to be washed away. 
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The convention in shell-and-tube heat exchangers is as follows: 
 

1 :T  inlet temperature of the shell-side (or hot) fluid 

2 :T  exit temperature of the shell-side (or hot) fluid 

1 :t  inlet temperature of the tube-side (or cold) fluid 

2 :t  exit temperature of the tube-side (or cold) fluid 
Thus, 

( ) ( )1 2 2 1
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T t T t
T

T t
T t

− − −
∆ =

 −
 − 

 

 
The fraction of the circular area that is open in a baffle is identified by a “percentage cut” and we 
refer to the types of baffles shown as “segmented” baffles.  For the shell side, in evaluating the 
Reynolds number, we must find the cross-flow velocity across a bundle of tubes that occurs 
between a pair of baffles, and determine the value of this velocity where the space for the flow of 
the fluid is the smallest (maximum velocity).   For the length scale, the tube outside diameter is 
employed. 
 
Most shell-and-tube heat exchangers have multiple “passes” to enhance the heat transfer.   Here 
is an example of a 1-2 (1 shell pass and 2 tube passes) heat exchanger. 

 
 
As you can see, in a 1-2 heat exchanger, the tube-side fluid flows the entire length of the shell, 
turns around and flows all the way back. It is possible to have more than two tube passes.  
Multiple shell passes also are possible, but involve fabrication that is more complex and is 
usually avoided, if possible. 
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Correction factors to be used in the rate equation have been worked out by analysis, subject to a 
set of simplifying assumptions, for a variety of situations.  In the olden days, the formulae for 
them were considered too cumbersome to use. Therefore graphs were prepared plotting ( ),F P R

, where 2 1
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=
−
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T TR
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−

=
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 are parameters on which F  depends.  Figures C4.a-d in 

Appendix C of the textbook by Mills display such graphs. Nowadays, one can compute these 
factors quickly with a pocket calculator.  Given next are the two common factors.   
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The first and second subscripts on the factor F correspond to the number of shell and tube 
passes, respectively. The simplifying assumptions mentioned in the previous paragraph, given 
in Perry’s Handbook, are as follows. 
 
1. The heat exchanger is at steady state. 
2. The specific heat of each stream remains constant throughout the exchanger. 
3. The overall heat transfer coefficient U  is constant. 
4. All elements of a given fluid stream experience the same thermal history as they pass through 
the heat exchanger (see footnote in Perry for a discussion regarding the violation of this 
assumption in shell-and-tube heat exchangers). 
5.  Heat losses are negligible. 
 
The formula given above for 1 2F −  also applies for one shell pass and 2, 4, (or any multiple of 2) 
tube passes.  Likewise, the formula for 2 4F −  also applies for two shell passes and 4, 8, (or any 
multiple of 4) tube passes. 
 
In designing heat exchangers, one should avoid the steep portion of the curves of F versus P , 
because small errors in estimating P  can cause large changes in the value of F .  A misleading 
rule of thumb is that 0.8F ≥ , but the correct idea is that the region of steep fall-off in the curves 
should be avoided. 
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Heat Transfer Coefficients 
 
The evaluation of the overall heat transfer coefficient is an important part of the thermal design 
and analysis of a heat exchanger.  You’ll find several tables of typical overall heat transfer 
coefficients in shell-and-tube heat exchangers in Chapter 11 of Perry’s Handbook. The following 
generic result can be written for the overall heat transfer coefficient oU  based on the outside 
surface area of the tubes, which is the heat transfer surface. 
 

,0 ,
1 1 1o o

f f i
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   ∆
= + + + +   

   
 

 
In the above equation, oh  is the heat transfer coefficient for the fluid flowing in the shell, ih  is 
the heat transfer coefficient for the fluid flowing through the tubes, iA  and oA  are the inside and 
outside surface areas of a tube, respectively, and lmA  is their log mean.  The fouling resistances 
on a unit area basis are ,0fR  for the shell side, and ,f iR  for the tube side.  Accumulated 
information on fouling resistances can be found in the Standards published by TEMA. 
 
The inside heat transfer coefficient ih  can be evaluated using the standard approach for 
predicting heat transfer in flow through tubes, including applying a viscosity correction where 
possible.  Typically, turbulent flow can be expected, and a good design would aim to arrange for 
turbulent flow, because of the substantial enhancement in heat transfer provided by eddy 
transport.  Predicting the shell-side heat transfer coefficient oh  is more involved, because the 
flow passage is not simple, even in the absence of baffles.  The presence of baffles needs to be 
taken into account in calculating the fluid velocity across the tube bank.  Heat transfer 
correlations for flow through tube banks are used, such as those given in the book by Holman 
(1). These correlations assume flow normal to the long axes of a set of tubes placed in a 
geometrical array.  The correlation given in Holman’s book is 
 

1/3Re Prno oh DNu C
k

= =  

 

The Reynolds number maxRe oD V ρ
µ

= , where oD  is the outside diameter of a tube.   maxV  is the 

“maximum” velocity of the fluid through the tube bank.  To find it, first, the cross-flow area 

must be evaluated.  This is given as clearanceCross flow area Shell ID Baffle spacing
pitch

= × ×  

where the clearance l  and pitch nS  (normal to the flow direction) are illustrated in the sketch on 
the next page for tubes in a square pitch. 
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The clearance n ol S D= − .  When the volumetric flow rate of the shell-side fluid is divided by 
the cross-flow area defined here, it yields the “maximum velocity” through the tube bank, maxV . 
The symbols , , andk ρ µ  represent the thermal conductivity, density, and viscosity of the shell-
side fluid, respectively, and all the properties should be evaluated at the arithmetic average 
temperature of that fluid between the two end temperatures.  The symbol Pr  stands for the 
Prandtl number of the shell-side fluid.  The exponent n  and the multiplicative constant C  
depend on the pitch to tube OD ratio, and are given in a table provided in Holman’s book.   An 
excerpt from the table for tubes on a rectangular pitch (in-line tube rows) is given below. 
 
 

Values of the constant C  
 

                /n oS D  1.25 1.5 2.0 3.0 
/p oS D      

1.25 0.386 0.305 0.111 0.0703 
1.5 0.407 0.278 0.112 0.0753 
2.0 0.464 0.332 0.254 0.220 
3.0 0.322 0.396 0.415 0.317 
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Values of the constant n  
 
                /n oS D  1.25 1.5 2.0 3.0 

/p oS D      
1.25 0.592 0.608 0.704 0.752 
1.5 0.586 0.620 0.702 0.744 
2.0 0.570 0.602 0.632 0.648 
3.0 0.601 0.584 0.581 0.608 
  
 
As an alternative, one can use the procedure outlined in Section 4.5.1 of the book by Mills.  For 
the shell-side heat transfer coefficient, the Nusselt number calculated from correlations using 
properties at the arithmetic average of the inlet and exit temperatures is usually sufficient. 
 
The actual flow patterns are more involved, because the flow entering the shell has to distribute 
itself into the space in which the tubes are located, and then the flow has to turn around each 
baffle.  At the exit, the flow again has to converge toward the exit pipe from the shell.  In 
addition, corrections need to be applied for leakage around the baffles, for by-pass of tube 
bundles, and other less important non-idealities.  As a rough rule of thumb, because of these 
various corrections, the ideal heat transfer coefficient oh  for flow across the tube bank 
calculated using a suitable correlation is multiplied by a conservative correction factor of 
0.6 in the end. 
 
Pressure Drop 
 
Tube-Side Pressure Drop 
 
In designing heat exchangers, pressure drop considerations are usually quite important.  
Typically, a design constraint might be P N psi∆ ≤ , where the number N  is specified, and such 
constraints may apply on both the tube side and the shell side.  Calculation of the tube-side 
pressure drop is made by first estimating the (Darcy) friction factor for flow through the tubes 
from the value of the Reynolds number and the relative roughness, and applying the viscosity 
correction we discussed in class.  Then, this friction factor is used to evaluate the pressure drop 
for flow through the tubes from 
 

21 Number of tube passes
2corrected

LP f V
D

ρ ∆ = × 
 

 

 
where L  is the length of the tubes, D  is the ID of the tubes, ρ  is the density of the tube-side 
fluid, and V  is the average flow velocity through a single tube.  To this, we must add rP∆ , the 
return pressure loss.  This accounts for the pressure drop associated with fluid entry into the tube 
bundle, fluid leaving the bundle, and fluid flowing around bends.   
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Here, tG Vρ=  is the mass velocity and is defined as 
 

Mass flow rate
Total flow area available per passt

t

mG
A

=  

and  
 

Total number of tubes Cross - sectional area of a tube
Number of passestA ×

=  

 
Shell-Side Pressure Drop 
 
There are several ways to estimate the pressure drop for the flow of the shell-side fluid in a shell-
and-tube heat exchanger.  A reasonable estimate can be obtained by the relatively simple 
approach described below, which is given in a book by Peters, Timmerhaus, and West (2).  This 
book also provides much valuable information on the design of such heat exchangers, including 
more sophisticated methods of estimating the pressure drop. 
 
The pressure drop on the shell-side is calculated using 
 

( )2

0.14

2 1s s B
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e
s

f G D N
P

D µρ
µ

+
∆ =

 
 
 

 

 
In this equation, f  is a Fanning friction factor for flow on the shell side given in Figure 14-44 of 
reference (2), sG  is the mass velocity on the shell side, sD  is the inside diameter of the shell, 

BN  is the number of baffles, ρ  is the density of the shell-side fluid, and eD  is an equivalent 
diameter.  The mass velocity /s mG m S= , where m is the mass flow rate of the fluid, and mS  is 
the crossflow area measured close to the central symmetry plane of the shell containing its axis. 
This area is defined as   
 

clearanceCross flow area
pitchs BD L= ×  

 
where BL  is the baffle spacing, and the clearance and pitch are defined in the notes on shell-and-
tube heat exchangers.  The equivalent diameter is defined as follows. 
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Here, 0D  is the outside diameter of the tubes, and nS  is the pitch (center-to-center distance) of 
the tube assembly.  The constant 1pC =  for a square pitch, and 0.86pC =  for a triangular pitch.  
The friction factor f  is given in Figure 14-44 of the book as a function of the Reynolds number 
based on the equivalent diameter (Note the difference from the Reynolds number that we use for 
the heat transfer coefficient from Holman, which uses 0D  as the length scale).  For the friction 
factor graph, we must use the Reynolds number Re  defined as 
 

Re e sD G
µ

=  

 
where µ  is the viscosity of the shell-side fluid.  A scanned image of Figure 14-44 from Peters et 
al. (2) is available for your use at the course web site. 
 
An alternative approach to estimating the shell-side pressure drop is given on pages 11-10 to 11-
11 from Perry’s Handbook; the notation is explained in pages 11-7 and 11-8.  But, it is 
recommended that you use the simple approach given in Peters et al. (2).  
 
Cost 
 
Cost is always an important consideration in designing any process equipment.  Cost can be 
broken into two principal components – capital cost and operating cost. In addition,  maintenance 
costs are incurred during operation, but they tend to be more or less independent of the size of 
the heat exchanger, so long as the size is within a reasonable range. 
 
The capital cost for heat exchangers increases with increase in the heat transfer area, and is 
evaluated by using values known from 1957-1959, and applying a multiplicative factor known as 
the “Cost Index.”  This index is published in each issue of Chemical Engineering, and uses 100 a 
the basis for the cost in 1957-1959.  To find the cost for the equipment in 1957-59, consult the 
nomogram in Figure 11-41 and Tables 11-13 and 11-14 from Perry’s Handbook.   
 
Operating cost is primarily pumping cost.  The pumps must provide work to overcome the 
pressure drop on the tube side and that on the shell side.  The shaft work per unit mass of fluid is 

/P ρ∆ , and this must be multiplied by the mass flow rate of the stream to obtain the shaft work 
per unit time or shaft power.  Then, this must be divided by the overall pump efficiency to obtain 
the actual power needed.  It is typical to conservatively assume the overall pump efficiency to be 
0.6.  The yearly pumping power cost can be calculated if one knows the cost per KWH (kilowatt-
hour).   You can assume operation 24 hours per day for 350 days a year (the remaining days 
being nominal maintenance shutdown days).    
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By writing off the capital costs over a certain length of time, the total cost per year can be 
worked out.  This is then minimized by making a suitable choice of heat exchanger, a job that 
requires examining several designs using software to perform the tedious computations. 
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