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When fluid flow occurs in a single direction everywhere in a system, shell balances are 
useful devices for applying the principle of conservation of momentum.  An example is 
incompressible laminar flow of fluid in a straight circular pipe.  Other examples include 
flow between two wide parallel plates or flow of a liquid film down an inclined plane.  
 
In the above situations, fluid velocity varies across the cross-section only in one 
coordinate direction and is uniform in the other direction normal to the flow direction.  
For flow through a straight circular tube, there is variation with the radial coordinate, but 
not with the polar angle.  Similarly, for flow between wide parallel plates, the velocity 
varies with the distance coordinate between the two plates.  If the plates are sufficiently 
wide, we can ignore variations in the other direction normal to the flow which runs 
parallel to the surfaces of the plates.   If we neglect entrance and exit effects, the velocity 
does not vary with distance in the flow direction in both cases; this is the definition of 
fully-developed flow.   
 
A momentum balance can be written for a control volume called a shell, which is 
constructed by translating a differential cross-sectional area (normal to the flow) in the 
direction of the flow over a finite distance.  The differential area itself is formed by 
taking a differential distance in the direction in which the velocity varies and translating it 
in the other cross-sectional coordinate over its full extent.  We shall see by example how 
these shells are formed.  The key idea is that we use a differential distance in the direction 
in which velocity varies. Later, we consider the limit as this distance approaches zero and 
obtain a differential equation. Typically this is an equation for the shear stress.  By 
inserting a suitable rheological model connecting the shear stress to the velocity gradient, 
we can obtain a differential equation for the velocity distribution.  This is then integrated 
with the boundary conditions relevant to the problem to obtain the velocity profile.  Once 
the profile is known, we can calculate the volumetric flow rate and the average velocity 
as well as the maximum velocity.  If desired, the shear stress distribution across the cross-
section can be written as well.  In the case of pipe flow, we shall see how this yields the 
well-known Hagen-Poiseuille equation connecting the pressure drop and the volumetric 
flow rate. 
 
Regarding boundary conditions, the most common condition we use is the “no slip” 
boundary condition.  This states that the fluid adjacent to a solid surface assumes the 
velocity of the solid.  Also, when necessary we use symmetry considerations to write 
boundary conditions.  At a free liquid surface when flow is not driven by the adjoining 
gas dragging the liquid, we can set the shear stress to zero.   In general at a fluid-fluid 
interface  the velocity and the shear stress are continuous across the interface.  Even 
though the interfacial region is made up of atoms and molecules and has a non-zero 
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thickness, we treat is as a plane of zero thickness for this purpose.  This means that the 
value of the velocity at a given point on the interface in one fluid is the same as the value 
of the velocity at the same point on the interface in the second fluid.  The same is true of 
the shear stresses in the two fluids except when the interfacial tension varies with 
position.  This can happen if the temperature varies along the surface or if surface active 
chemicals are present.    Now, we shall proceed to construct a shell momentum balance 
for steady laminar flow through a straight circular tube.    
 
Steady Fully-Developed Incompressible Laminar Flow in a Straight Circular Tube 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cylindrical polar coordinates ( ), ,r zφ  are used.  We assume steady incompressible fully-
developed laminar flow in the z -direction.  The only non-zero velocity component is zv  
and it only depends on the radial coordinate r .  Therefore, ( )z zv v r= .  Similarly, the 

shear stress ( )rz rz rτ τ= .  The shell shown in the figure is L  units long and r∆ units thick 
in the radial direction.  Its inner cylindrical surface is at a radial location r  and the outer 
cylindrical surface is at r r+ ∆ . 
 
At steady state, the rate of accumulation of momentum in the fluid contained in the shell 
is zero. Momentum enters at the left face and leaves at the right face with the flowing 
fluid.  The shell balance reads as follows. 
 
Rate of entry of momentum into shell - Rate of efflux of momentum from the shell 
+ Sum of all the forces acting on the fluid in the shell =  0. 
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The volumetric flow rate of fluid into the shell is  
 

2 zQ r r vπ∆ = ∆  
 
If the density of the fluid is ρ , the associated mass flow rate into the shell is 
 

[ ] 0
2 z z

m r r vπ ρ
=

∆ = ∆  
 
and the rate of entry of momentum, which is the product of the mass flow rate and the 
velocity, is written as follows. 
 
Rate of entry of momentum  [ ] 2

0 0
2z zz z

m v r r vπ ρ
= =

 = ∆ = ∆    

 
Similarly, the rate of efflux of momentum out of the right face can be written at 
 
Rate of efflux of momentum  [ ] 22z zz L z L

m v r r vπ ρ
= =

 ∆ = ∆    

 
Because zv  only depends on r  and not on z , the two terms cancel each other.  So the 
shell balance reduces to the statement that the sum of the forces on the fluid in the shell is 
zero.   The forces on the fluid consist of the pressure force, the gravitational force, and 
the viscous force.  We shall account for each in turn. 
 
The pressure force, given as the product of the area and the pressure acting on it, is 
written as follows. 
 
Pressure force ( ) ( )2 0r r p p Lπ= ∆ −    
 
The force of gravity on the fluid in the shell, given as the product of the mass of the fluid 
in the shell and the (vector) acceleration due to gravity g  acts vertically downward.  We 
need to use the component of this force in the z -direction.  This can be obtained as 
 
Contribution in the flow direction from the gravitational force 2 cosr rL gπ ρ θ= ∆   
 
where g  is the magnitude of the (vector) acceleration due to gravity g .   
 
We now calculate the viscous force acting on the shell.  The fluid at r r+ ∆ exerts a shear 
stress on the fluid in the shell in the positive z − direction which we designate as 

( )rz r rτ + ∆ .   This notation means “shear stress evaluated at the location r r+ ∆ .”  
Multiplied by the surface area of the shell at that location this yields a force 

( ) ( )2 rzr r L r rπ τ+ ∆ + ∆ in the z − direction.  In the same way, the fluid within the shell 
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at the location r  exerts a stress ( )rz rτ  on the fluid below, i.e. at smaller r .  As a result, 
the fluid below exerts a reaction on the shell fluid that has the opposite sign.  The 
resulting force is ( )2 rzrL rπ τ− .  Therefore, the total force arising from the shear stresses 
on the two cylindrical surfaces of the shell fluid is written as follows. 
 
Force from viscous stress ( ) ( ) ( )2 rz rzL r r r r r rπ τ τ= + ∆ + ∆ −    
 
Add the forces, set the sum to zero, and divide by 2 rLπ∆  to obtain the following result. 
 

( ) ( ) ( ) ( ) ( )0
cos 0rz rzp p L r r r r r r

r g
L r

τ τ
ρ θ

− + ∆ + ∆ − 
+ + =  ∆ 

 

 
Now we take the limit of the terms in the above equation as 0r∆ → .  The first term is 
unaffected while the second term is simply the derivative of rzrτ  with respect to r .  This 
leads us to the first order differential equation for the shear stress ( )rz rτ . 
 

( )1
rz

d Pr
r dr L

τ ∆
= −  

 
where we have introduced the symbol 
 

( ) ( )0 cosP p p L gLρ θ∆ = − +  
 
for convenience.  The quantity P  is known as the hydrodynamic pressure or simply the 
dynamic pressure.  Its gradient is zero in a stationary fluid and therefore it is uniform 
when the fluid is not in motion.  
 
We can integrate the differential equation for the shear stress immediately by noting that 
the right side is just a constant while the left side is the derivative of rzrτ .  The result of 
this integration is  
 

2

12rz
P rr C

L
τ ∆

= − +  

 
where 1C  is an arbitrary constant of integration that needs to be determined.  We can 
rewrite this result as 
 

1

2rz
CP r

L r
τ ∆

= − +  
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According to this result, the shear stress should approach infinity as the radial coordinate 
0r → .  This is not physically possible.  Therefore, we must choose the arbitrary constant 

of integration 1 0C =  and write the shear stress distribution in the tube as follows. 
 

2rz
P r
L

τ ∆
= −  

 
The shear stress is zero at the centerline and its magnitude is a maximum at the tube wall.  
It varies linearly across the cross-section.  We can explain why it is negative.  Recall that 
a force acting in the positive z − direction is taken by convention here to be positive.   
The fluid at the wall is stationary, however, and exerts a viscous force in the negative z −
direction on fluid in the adjacent layer which is trying to slide past it.  This is why the 
shear stress, according to our convention, is negative.  A sketch of the shear stress 
distribution is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
To find the velocity distribution, we need to introduce a relationship between the shear 
stress and the velocity gradient.  Recall the Newtonian constitutive model  
 

z
rz

dv
dr

τ µ=  

 
where µ  is the dynamic viscosity of the fluid.  Use of this constitutive model in the result 
for the shear stress leads to  
 

2
zdv P r

dr Lµ
∆

== −  

 

r
z

R

( )rz rτ
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This equation can be integrated immediately to yield  
 

( ) 2
2 4z

Pv r C r
Lµ

∆
= −  

 
where a new arbitrary constant of integration 2C  has been introduced.  To determine this 
constant we must impose a boundary condition on the velocity field.  This is the no slip 
boundary condition at the tube wall r R= . 
 
( ) 0zv R =  

 
Use of this condition leads to the result  
 

2

2 4
P RC

Lµ
∆

=  

 
so that we can write the velocity distribution as follows. 

( )
2 2

21
4z
P R rv r

L Rµ
 ∆

= − 
 

 

 
This velocity distribution describes a parabola. It is sketched below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We see that the maximum velocity occurs at the centerline, which is at 0r = .   Its value 
is 

2

max 4
P Rv

Lµ
∆

=  

r
z R

( )zv r
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We can calculate the volumetric flow rate through the tube by multiplying the velocity at 
a given r  by the differential cross-sectional area 2 r drπ  to yield dQ  and then 
integrating across the cross-section. 
 

( )
2 2

2
0 0 0

4

2 1
2

8

Q R R

z
P R rQ dQ r v r dr r dr
L R

P R
L

ππ
µ

π
µ

 ∆
= = = − 

 
∆

=

∫ ∫ ∫
 

 
This is a result known as the Hagen-Poiseuille equation for the relationship between the 
flow rate and the applied pressure drop for laminar flow through a circular tube.  Now, 
we can calculate the average velocity in the tube, defined as the volumetric flow rate per 
unit area of cross-section. 

 
 

 
It can be seen that in a circular tube, the average velocity is one-half the maximum 
velocity.   
 
Steady Fully-Developed Incompressible Laminar Flow Between Parallel Plates 
 
A similar development can be made for flow between wide parallel plates that are 
separated by a distance 2h .   Let us consider flow driven by a pressure difference 

( ) ( )0p p p L∆ = −  between the inlet and exit of a channel formed two horizontal parallel 
plates. 
 

 
 
 
 

z
y

Hx

Shell

y∆

Flow

L

2

avg 2 8
Q P Rv
R Lπ µ

∆
= =
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A sketch of the channel, showing a shell that is L  units long and W units wide in the 
direction normal to the plane of the paper is shown.   
 
We make the following assumptions. 
 
Fully developed flow (Means no end effects) 
Steady flow 
Incompressible flow  (means constant density) 
Newtonian flow 
Laminar flow 
The only non-zero velocity component is zv  and it only depends on the coordinate y .  
Therefore, ( )z zv v y= .   
 
The thickness of the shell in the y −direction is y∆ .  From the inlet, the end view of the 
shell looks like this. 

 
 
Conservation of Momentum 
 
At steady state, the rate of accumulation of momentum in the fluid contained in the shell 
is zero. Momentum enters at the left face and leaves at the right face with the flowing 
fluid.  The shell balance reads as follows. 
 
Rate of entry of momentum into shell - Rate of efflux of momentum from the shell 
+ Sum of all the forces acting on the fluid in the shell =  0. 
 
Now, the volumetric flow rate of fluid into the shell is  
 

[ ] 0z z
Q W y v

=
∆ = ∆  
 
If the density of the fluid is ρ , the associated mass flow rate is 
 

[ ] 0z z
m W y vρ

=
∆ = ∆  
 
and the rate of entry of momentum, which is the product of the mass flow rate and the 
velocity, is written as follows. 
 
Rate of entry of momentum  [ ] 2

0 0z zz z
m v W y vρ

= =
 = ∆ = ∆    

 
Similarly, the rate of efflux of momentum out of the right face can be written at 
 

W
y∆
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Rate of efflux of momentum  [ ] 2
z zz L z L

m v W y vρ
= =

 = ∆ = ∆    

 
Because zv  only depends on y  and not on z , the two terms cancel each other.   So the 
shell balance reduces to the statement that the sum of the forces on the fluid in the shell is 
zero.   The forces on the fluid consist of the gravity force, the pressure force, and the 
viscous force.  We shall account for each in turn.  The force of gravity acts downward 
and makes no contribution to the momentum changes in the z − direction.  Its main role is 
to produce a hydrostatic variation of pressure with height that can be taken out by 
redefining the pressure as the “hydrodynamic pressure,” which is uniform across the 
cross-section of the channel at any given z . 
  
The pressure force, given as the product of the area and the pressure acting on it, is 
written as follows. 
 
Pressure force ( ) ( )0W y p p L= ∆ −    
 
We now calculate the viscous force acting on the shell.  The fluid at y y+ ∆ exerts a shear 
stress on the fluid in the shell in the positive z − direction, which we designate as 

( )yz y yτ + ∆ .   This notation means “shear stress evaluated at the location y y+ ∆ .”  

Multiplied by the surface area of the shell, this yields a force ( )yzWL y yτ + ∆ in the z −
direction.  In the same way, the fluid within the shell at the location y  exerts a stress 

( )yz yτ  on the fluid below, i.e. at smaller y .  As a result, the fluid below exerts a reaction 

on the shell fluid that has the opposite sign.  The resulting force is ( )yzWL yτ− .  
Therefore, the total force arising from the shear stresses on the top and bottom surfaces of 
the shell fluid is written as follows. 
 
Force from viscous stress ( ) ( )yz yzWL y y yτ τ = + ∆ −   
 
Add the forces and set the sum to zero.  
 

( ) ( ) ( ) ( )0 0yz yzW y p p L WL y y yτ τ ∆ − + + ∆ − =      
 
Define the pressure drop ( ) ( )0p p p L∆ = − , divide the above result throughout by WL y∆
, and rearrange to get 
 

( ) ( )yz yzy y y p
y L

τ τ+ ∆ − ∆
= −

∆
 

 
Now, take the limit as 0y∆ → .  This leads to the following differential equation. 
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yzd p
dy L
τ ∆

= −  

 
We can integrate this equation immediately because the right side is a constant.  The 
result is 
 

( ) 1yz
py y C

L
τ ∆

= − +  

 
It is possible to establish the value of the arbitrary constant of integration 1C  by using a 
symmetry condition that ( )0 0yzτ = .   But we shall leave the constant in the solution and 
proceed to insert the constitutive equation.  This is Newton’s law of viscosity, which can 
be written as 
 

z
yz

dv
dy

τ µ=  

This leads to the differential equation 
 

1zdv Cp y
dy Lµ µ

∆
= − +  

 
Again, this can be integrated immediately to yield 
 

( ) 2 1
22z

Cpv y y y C
Lµ µ

∆
= − + +  

 
To evaluate the two constants of integration, we need two boundary conditions.  We can 
use the no slip conditions at each wall. 
 
No slip at the top wall: ( ) 0zv H =  
 
No slip at the bottom wall: ( ) 0zv H− =  
 
Apply each condition in turn. 
 

( ) 2 1
20

2z
Cpv H H H C

Lµ µ
∆

= = − + +  

 

( ) 2 1
20

2z
Cpv H H H C

Lµ µ
∆

− = = − − +  
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Solve these two equations for the unknown constants 1C  and 2C . 
 

2
1 20

2
pC C H
Lµ

∆
= =  

 
Therefore, we can finally write 
 

( )yz
py y

L
τ ∆

= −  

( )
2 2

21
2z
pH yv y

L Hµ
 ∆

= − 
 

 

 
Just as in a circular tube, this is a parabolic velocity profile that is symmetric about the 
centerline. The maximum velocity occurs at the centerline, 0y = . 
 

2

max 2
P hv

Lµ
∆

=  

 
The differential cross-sectional area for flow is W dy  and the differential volumetric flow 
rate would be ( )zdQ v y W dy= . By integrating this result across the cross-section, we 
obtain the volumetric flow rate Q  as 
 

32
3
PWhQ

Lµ
∆

=  

 
The average velocity is obtained by dividing Q  by the cross-sectional area 2Wh . 
 

2

avg 3
P hv

Lµ
∆

=  

 
We can see that the ratio of the average to the maximum is 2 / 3  for steady laminar flow 
between wide parallel plates. 
 
The laminar flow of a liquid film down an inclined plane can be modeled in the same 
manner as flow between parallel plates.  In this case, if we measure the y − coordinate 
from the free surface of the liquid, the above parabolic velocity profile applies directly.  
This is because the flow between parallel plates is symmetric about the centerline 0y = , 
which leads to the velocity gradient being zero along the centerline.  For the flow of a 
liquid film driven by gravity, the shear stress at the free liquid surface is negligible.  This 
means that the velocity gradient is negligible at 0y = .  This is why the velocity profile in 
a falling liquid film in laminar flow is represented by one-half of the parabola that is 
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obtained for flow between parallel plates.  The ratio of the average velocity to the 
maximum velocity is the same as that for flow between parallel plates, namely 2 / 3 .  If 
we use h  for the film thickness, we can immediately write the volumetric flow rate in the 
film as 
 

3

3
PWhQ

Lµ
∆

=  

 
The free surface of the liquid film is exposed to the atmosphere everywhere so that there 
can be no pressure gradient in the direction of the flow. This means that ( ) ( )0p p L= .  
Therefore, we can write 
 

cosP g
L

ρ θ∆
=  

 
which yields 
 

3 cos
3

gWhQ ρ θ
µ

=  

 
The utility of this relationship between the volumetric flow rate and the film thickness 
lies in the fact that it can be used to determine the film thickness for a given volumetric 
rate of flow. 
 
Summary 
 
These notes introduce you to a simple approach for modeling one-dimensional flow 
situations.  The main idea is to construct a shell of fluid that is long in the flow direction, 
but of differential thickness in the direction along which the velocity varies.  By 
accounting for all the forces on the fluid contained in this shell, and permitting the 
thickness of the shell to approach zero, we obtain a differential equation for the shear 
stress distribution in the direction normal to that of the flow.  Introducing a constitutive 
model, such as the Newtonian model, permits us to develop a differential equation for the 
velocity distribution.  The shear stress and velocity distributions can be obtained by 
integrating the applicable differential equations. The arbitrary constants, which must be 
introduced when the integrations are performed, can be evaluated by the application of 
boundary conditions based on physical principles.  When the velocity distribution has 
been obtained, it can be multiplied by a differential area element and integrated across the 
cross-section to obtain the volumetric flow rate.  The average velocity can be obtained as 
the volumetric flow rate divided by the cross-sectional area. 
 
The shell balance approach is limited to one-dimensional flow situations and straight 
geometries.  In the more general case, we must use partial differential equations obtained 
using the same principles, known as the Navier-Stokes equations, and simplify them for 
the specific problem under consideration.    
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