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Heat transfer is the study of the flow of heat.  In chemical engineering, we have to know how to 
predict rates of heat transfer in a variety of process situations.  For example, in mass transfer 
operations such as distillation, the overhead vapor has to be condensed to liquid product in a 
condenser, and the bottoms are boiled off into vapor in a reboiler.  Often the feed stream is pre-
heated using the bottoms product in a heat exchanger.  Another example is the production and 
use of process steam, which is brought to various locations in a plant through steam pipes as a 
heating utility.  Also, these steam pipes need to be insulated to minimize heat loss to the ambient 
air.  Such insulation is also important when transporting hot fluids from one place to another. A 
similar application is the transport of refrigerated liquids through piping – here we need to 
insulate to avoid transferring heat into the liquid from the ambient air.  Chemical reactors can 
generate heat if the reaction is exothermic, and this heat must be removed to avoid a runaway 
reaction; likewise, endothermic reactions need a supply of heat to maintain the reaction.   
 
Heat transfer also is important in our daily lives.  For example, we heat our homes in the winter 
using hot water in baseboard heaters.  We boil water routinely for cooking purposes.  If you look 
inside a modern personal computer, you’ll see a fan that is used to cool the electrical circuitry, 
which becomes warm because of the flow of electrical current through resistances.  Sometimes 
when the circuits are dense, a refrigerant is used in a sealed tube that is boiled at one end where it 
is warm, to take away the heat, and condensed at the other end where it is cooler.  
 
The bodies of warm-blooded animals contain many examples of internal heat transfer as well as 
heat transfer with the surrounding air.  Such animals possess a finely-tuned system that regulates 
their body temperature by adjusting rates of internal reactions to produce heat, varying blood 
flow rates as needed, and varying the diameter of blood vessels. 
 
Finally, life on earth is possible only because of energy received from the sun by radiative heat 
transfer. Radiative heat transfer also is important in the manufacture of steel and other such 
materials, and in furnaces used for melting glass. 
 
In all of these situations and many others, we can identify three basic mechanisms of heat 
transfer. They are conduction, convection, and radiation.  Next, we discuss each of these 
mechanisms in some detail.  You’ll find additional information in your textbook.  Also, two good 
references are the texts by Mills (1) and Holman (2). 
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Conduction 
 
Conduction is an electronic/atomic mechanism of transferring energy from one place to another 
in solids, and a molecular mechanism of heat transfer in liquids and gases.  We begin with a 
simple example of heat conduction through a window when the inside of the room is warm and 
the outside is cold.  Let us assume that we know the temperatures of the inside and outside 
surfaces of the window, and build a steady state model of heat flow by conduction through the 
window.  We model the window as a tall and wide rectangular slab, and refer to it as a slab in 
subsequent discussion, because the model is applicable to many other situations besides heat 
transfer through a window.  A sketch is given below.   
 

   
 
We assume that the temperature is uniform in the other two coordinate directions y  and z  in the 
slab, varying only with distance x  from the left boundary shown in the sketch.  The heat flow 
rate through the slab is assigned the symbol Q .  The heat flow rate can vary with x , a possibility 
that is acknowledged  by writing it as ( )Q x .  Incidentally, the textbook by Welty et al. uses the 
lower case symbol q  for this heat flow rate; most others use capital Q  for the heat flow rate, and 
lower case q  to designate the heat flow rate per unit area, or heat flux.  We shall follow that 
convention in the course.   
 
Our initial objective is to determine how ( )Q x  varies with x  at steady state.  Eventually, we 
expect to determine the temperature distribution in the slab and the heat flow rate through it.  We 
first consider two surfaces within the slab that are parallel to the left and right surfaces.  These 
imaginary surfaces are located at some distance x  from the left wall, and a slightly larger 
distance x x+ ∆ as shown.  At steady state, there can be no accumulation of energy in the volume 
bounded by these two surfaces shown as a hatched region in the sketch; if energy accumulates in 
that volume, its temperature would change with time, and this would lead to unsteady conditions, 
violating the assumption of steady state.  Therefore, we conclude that the rate of heat flow into 
the surface at x  must be exactly the same as the rate of heat flow out of the surface at x x+ ∆ . 

x x+ ∆x

x
( )Q x x+ ∆( )Q x

L

1T 2T
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( ) ( )Q x Q x x= + ∆  

 
Let us rearrange this result after division by x∆ . 
 

( ) ( ) 0
Q x x Q x

x
+ ∆ −

=
∆

 

 
Now take the limit as 0x∆ → .  This leads to the simple differential equation 
 

0dQ
dx

=  

 
Integration is straightforward, and leads to the result 
 

constantQ =  
 
 Of course, this is a common-sense conclusion that we could have drawn merely by physical 
inspection of the problem.  The reason for going through the mathematical development is to 
learn how to construct such models, which will prove useful in more complicated situations. 
 
The heat flow rate Q qA= , where A  is the cross-sectional area of the slab normal to the x −
direction, and q is the heat flux.   Therefore, we reach the conclusion that the heat flux q  must 
remain constant, independent of x . If we wish to determine this heat flux from a knowledge of 
the temperatures of the two surfaces, we must have a model that relates the heat flux to 
temperatures.  Such a model is called Fourier’s law, which is analogous to Newton’s law of 
viscosity, which we encountered in fluid mechanics.  Newton’s law relates the momentum flux 
or stress to the gradient in velocity.  Likewise, Fourier’s law relates the heat flux to the gradient 
of temperature. Fourier postulated that the heat flux is proportional to the local temperature 
gradient.  In simple one-dimensional form, we can write 
 

x
dTq k
dx

= −  

where we have introduced a subscript x  for the heat flux to indicate that it is the component of 
the heat flux in the x − direction.  Often, the subscript x  is dropped for convenience, and we 
simply write  
 

dTq k
dx

= −  

 
Because q  is a constant, the right side must be a constant as well.  We’ll discuss the quantity k , 
called  the thermal conductivity of the material of the slab, which appears in Fourier’s law, a bit 
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later.  For now, let us just treat it as a known constant.  We can see that /dT dx  within the slab 
must be a constant.  This is an important conclusion.  It tells us that the temperature profile in the 
slab must be a straight line. 
 
 

    
 
 
The temperature gradient is the constant slope of the straight line shown in the figure.  It is 
obtained as 
 

2 1 1 2

0
T T T TdT T

dx L L L
− − ∆

= = − = −
−

 

 
where 1 2T T T∆ = −  is considered the driving force for conduction through the slab.  The heat 
flux can be written as  
 

dT Tq k k
dx L

∆
= − =  

 
and the steady heat flow rate through the slab, Q qA= , is obtained as 
 

TQ kA
L
∆

=  

 
This can be recast as 
 

Driving Force
/ Resistance
TQ

L kA
∆

= =  

 

x

L

1T

2T

constant slope
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Fourier’s Law 
 
Because there are no temperature variations in the y  and z − directions in the problem we just 
modeled, the components of the heat flux in those two directions are zero, but in general heat 
flux has a direction in space as well as a magnitude, so that it is a vector.  Therefore, the general 
form of Fourier’s law is a vector relationship between the heat flux vector and the temperature 
gradient vector.  
 

k T= − ∇q  
 
To see how we were able to write the simpler version earlier, we need to write each side in the 
above vector relationship in terms of its components in the basis set ( ), ,i j k , where , ,i j k  are 

unit vectors in the three coordinate directions, ( ), ,x y z , respectively.  Thus, 
 

x y z
T T Tq q q k
x y z

 ∂ ∂ ∂
= + + = − + + ∂ ∂ ∂ 

q i j k i j k  

 
By matching the coefficients of , ,i j  and k between the left and right sides, we can write results 
for the individual heat flux components in each coordinate direction. This is how we obtained the 
simpler version we used earlier.  You may notice that we used an ordinary derivative in writing 
Fourier’s law in the x − direction.  
 

x
dTq k
dx

= −  

 
This is because the temperature in the slab varies only in the x − direction, so that the partial 
derivative becomes the ordinary derivative in that context. 
 
You may wonder why there is a negative sign in the right side in Fourier’s law, k T= − ∇q .  The 
gradient of a scalar function points in the direction of maximum rate of increase of that function 
at a given point in space.  But, heat flows downhill – that is, the local heat flux is in the direction 
of maximum rate of decrease in temperature, exactly opposite to that of the temperature gradient. 
This is why a minus sign is introduced in the proportionality written above.   
 

 dTq k
dx

= −  

 
Thermal Conductivity 
 
The symbol k stands for a material property; it is the thermal conductivity of the medium.  We 
can use Fourier’s law to infer the units and dimensions of thermal conductivity. 

Heat FluxThermal Conductivity
Temperature Gradient

=  
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Therefore k  has units of  
2/

/
W m W
K m m K

=
•

 in SI.  In the British system, k  is measured and 

reported in ( )/BTU hr ft F• •  . You should take the time to work out the dimensions of the 

thermal conductivity from basic principles as ( )3/ML T θ , where , , , andM L T θ  stand for the 
dimensions of Mass, Length, Time, and Temperature Difference, respectively. Approximate 
values of the thermal conductivities of a few common materials at 27 C  from (1) are listed 
below. 
 
Material / ( )k W m K•  
copper 386 
aluminum 204 
stainless steel 15 
pyrex glass 1.09 
water 0.611 
fiberglass 0.038 
polystyrene 0.028 
air 0.027 
 
We shall abbreviate “thermal conductivity” to “conductivity” because there should be no 
confusion with electrical conductivity in the present context.  The conductivity of solids, with the 
exception of “insulators” is typically larger than that of liquids, and the conductivity of liquids is 
usually larger than that of gases.  The conductivity of insulators is similar to that of gases. 
 
Thermal conductivity depends on temperature. Typically, in gases, the conductivity increases as 
the temperature is increased, while it decreases in liquids as the temperature is increased.  In 
some liquids, it is nearly constant over a wide range of temperature values, and in a few liquids it 
increases with temperature over some range before decreasing, thus displaying a maximum. 
There is no general rule for the temperature dependence of the thermal conductivity of a solid. 
The conductivity of copper decreases as the temperature is increased, whereas that of aluminum 
increases with increasing temperature.  Good electrical conductors also prove to be good thermal 
conductors.  Some solids such as fiberglass, polystyrene, or wood, which are poor conductors of 
electricity, also have a very low thermal conductivity, and are considered thermal insulators.   
 
Thermal conductivity is relatively insensitive to pressure variations, except when the material is 
near critical conditions. 
 
Electrical Analogy and Conduction Through a Composite Slab 
 
Earlier, we wrote the heat flow rate through a slab as the ratio of a driving force to a resistance. 
 

( )
Driving Force

/ Resistance
TQ

L kA
∆

= =  .   One can draw an analogy with a simple electrical circuit. 
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When a potential difference V is applied across a resistance R , the current through the circuit is  
 

VI
R

=  

 
Now, consider steady conduction through a composite slab, made of two different materials A 
and B of different thermal conductivities Ak  and Bk , respectively.   
 

    
 
By performing an analysis similar to that given earlier, we can quickly conclude that at steady 
state, the heat flow rate through the composite slab must be constant, independent of time and 
position in the slab.  Therefore, 
 

A BQ Q Q= =   
 
We can see that AQ  and BQ  are given by 
 

1 2
A A

A

T TQ k A
L
−

=   2 3
B B

B

T TQ k A
L
−

=  

 

V

RI

AL

1T

3T

BL

2T

A B

A Bk k>
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where A  is the area for heat flow.  Therefore, we can write 
 

( ) ( )
2 31 2

/ /A A B B

T TT TQ
L k A L k A

−−
= =     or 2 31 2

A B

T TT TQ
R R

−−
= =  

 
where ( )/A A AR L k A=  and ( )/B B BR L k A=  are the individual resistances of slabs A and B to 
heat conduction, respectively.   Thus, the heat flow rate is given by the driving force within each 
segment, divided by the resistance of that segment.  We can write 
 

1 2 AT T Q R− =   2 3 BT T Q R− =  
 
Adding, we find 
 

( )1 3 A BT T Q R R− = +  
or 

1 3

A B

T TQ
R R

−
=

+
 

 
It is evident that the heat flow rate through a composite slab is simply the total driving force 
divided by the sum of the two resistances.  The analogy to a series electrical circuit should be 
evident. 
 
The linear temperature profiles in each segment of the composite slab are shown in the sketch for 
the case A Bk k> .  For a constant heat flux, when the conductivity is large, the slope of the 
temperature profile must be small, and vice versa.  You should try sketching the temperature 
profiles in the reverse case A Bk k< .  Also, recognizing that the thermal conductivity actually 
depends on temperature, try making a sketch of the temperature profile for steady conduction in 
a single slab when the thermal conductivity increases or decreases with increasing temperature  
(Hint: the profile will no longer be a straight line). 
 
It is straightforward to extend the results to any number of segments in the composite slab.  
Thus, we can write in general 
 

k
k

TQ
R

∆
=
∑

 

 
where T∆  is the temperature difference across the entire composite slab, and ( )/k k kR L k A=  is 
the resistance of the 'k th  segment to conduction. 
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Convective Heat Transfer 
 
We already are familiar with fluid motion.  When an element of fluid moves from one place to 
another, it brings its energy content with it, so that this is another mechanism for transferring 
energy from one place to another.  Convection can be forced, which means that we are using 
some means to cause the motion – this can be a pressure difference in a conduit that is generated  
by a pump or a storage tank at some elevation, or by a fan blowing air, and so on. The alternative 
to forced convection is free or natural convection, which refers to flow that occurs naturally, 
without any intervention.  Natural convection is caused by the action of density gradients in 
fluids in conjunction with the gravitational force.  Typically, we see less dense fluid rise when it 
is located next to more dense fluid, while the more dense fluid sinks.  Thus, a baseboard heater at 
home warms the neighboring air, and the warm air rises, allowing cooler air to move toward the 
heater and get warmed in turn.  Incidentally, the “radiator” in older homes, is really not a 
radiator, but is similar to a baseboard heater that uses natural convection in its operation.   
 
Natural convection is the source of all of the weather patterns that we experience.  It also causes 
mixing in oceans and lakes.  Density differences that lead to natural convection can arise from 
temperature variations in a fluid in a heat transfer context, or from composition variations, which 
can occur in mass transfer equipment. 
 
Regardless of the reason for the motion in the fluid, whether forced or natural, we call this 
mechanism “convective heat transfer.”  Now, consider a hot surface at a temperature sT  in 
contact with a moving fluid that is at some other temperature aT  far from the surface. 
 

 
 
In this situation, there will be a heat flux from the surface to the fluid.  We write this heat flux as  
 

( )0x s ax
q h T T h T

=
= − = ∆  

 
where h  is termed the “convective heat transfer coefficient” between the surface and the fluid, 
and ( )s aT T T∆ = − is the driving force for heat transfer.  Note that this equation only serves to 
define this heat transfer coefficient h , and we must have some way of knowing its value to use 
the equation for the heat flux.  Later, we’ll learn about correlations that are used to calculate 
values of h  in a variety of flow situations.    
 

sT aTx
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We note that the tangential and normal velocity components are both zero at a solid surface that 
is stationary and impervious to the fluid.  Therefore, heat transfer to the fluid at the surface 
actually occurs only via conduction, neglecting radiative heat transfer.  It is therefore possible to 
write  

0
0

x fluidx
x

Tq k
x=

=

∂ = −  ∂ 
 

Therefore, if we have some means of calculating the temperature gradient in the fluid in contact 
with the solid surface, we can predict the value of xq , and therefore, the heat transfer coefficient 
between the solid and the fluid.   In simple flow situations, this is precisely what one does, but 
making such predictions are beyond the scope of the present course. 
 
The units and dimensions of the heat transfer coefficient can be inferred from its defining 
equation.   

Heat FluxHeat Transfer Coefficient
Temperature Difference

=  

Therefore, h  has units of  
2

2

/W m W
K m K

=
•

 in SI.  In the British system, h  is measured and 

reported in 2

BTU
hr ft F• • 

.  The dimensions of h  are ( )3/M T θ , where , , andM T θ  stand for the 

dimensions of Mass, Time, and Temperature Difference, respectively. Depending on the 
intensity of the motion in the fluid and the properties of the fluid, the convective heat transfer 
coefficient can vary in value over at least five orders of magnitude.  In a given geometry, the heat 
transfer coefficient will also depend on position, but we usually use average values over the 
entire heat transfer surface.  Typically, the heat transfer coefficient is relatively small for natural 
convection in gases caused by small density differences, takes on intermediate values for forced 
convection in gases and liquids, and is large for phase change applications such as boiling and 
condensation heat transfer.  For example, for forced convection in air, a typical range of values 
of h  might be ( )220 250 /W m K− • .  For forced convection in water, the range might be 

( )4 250 10 /W m K− • .  Values of h  for free convection heat transfer are much smaller.  The 

range for air is roughly ( )23 50 /W m K− • , while values of h  for free convection in water lie in 

the approximate range ( )3 210 10 /W m K− • .  In boiling and condensation, h  varies from 
3 53 10 10× − ( )2/W m K• .   

 
In forced convection, the heat transfer coefficient is independent of T∆ , the driving force for 
heat transfer.  In natural convection situations, however, h will depend on T∆ , because it is the 
temperature difference that causes density variations, and leads to the flow.  Typically, 1/nh T∝ ∆  
where n  varies from 3 to 4.  In phase change heat transfer, such as boiling and condensation, the 
driving force is chosen as the difference between the actual temperature of the surface and the 
saturation temperature of the fluid under the prevailing conditions.  Therefore, in these situations, 
h will again depend on T∆ . 
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We close with the concept of additivity of resistances in steady heat flow situations when 
conduction and convective heat transfer occur in series.  Consider the case where heat is 
conducted through a slab and is transferred to the surrounding fluid on the outside by convective 
heat transfer.  A sketch of the system is shown below.  
  

    
 
The two sides of the slab of width L  are at temperatures 1T  and 2T  as shown.  The ambient fluid 
is at temperature oT , and heat transfer between the right surface of the slab and the ambient fluid 
is described by a heat transfer coefficient h . At steady state the same amount of heat Q  must 
flow through the slab and out to the fluid.  From the models we have constructed, we can write 
Q  as 

( )1 2
2solid o

T TQ qA k A hA T T
L
−

= = = −  

where q  is the steady state heat flux and A  is the cross-sectional area of the slab for the flow of 
heat.  We can rewrite the above result as 
 

( )
21 2

/ 1/
o

solid

T TT TQ
L k A hA

−−
= =  

 
in the form of the ratios of individual temperature difference driving forces and resistances.  
Here, ( )/solid solidR L k A= , and ( )1/fluidR hA= .  By the same techniques used in the case of 
steady conduction through a composite solid, we can show that 
 

1 o

solid fluid

T TQ
R R

−
=

+
 

 
Thus, the concept of adding resistances in series works equally well for convective heat transfer 
resistances as it does for conduction resistances.  

L

1T

2T
Fluid at oT

oT
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Multiple Resistances in Series – The Overall Heat Transfer Coefficient U  
 
We can extend the idea developed above for one conduction resistance and one convective heat 
transfer resistance in series in a straightforward manner to multiple resistances within the slab 
and convective heat transfer resistances on both sides.  Consider a composite slab made of two 
materials that is exposed to air on the inside of a room on one side and outside air on the other 
side.  The convective heat transfer rate on the inside is described using a heat transfer coefficient 

ih , and that outside likewise by oh .  Let the temperature inside the room away from the surface 
at 1T  be iT , and that in the ambient air outside be oT .  The various surface temperatures in the 
slab are marked on the sketch below. 
 
 

  
 
At steady state, we can write 
 

( ) ( )2 31 2
1 3i i A B o o

A B

T TT TQ h A T T k A k A h A T T
L L

−−
= − = = = −  

which can be recast as 
 

( ) ( )
1 2 3 31 2

1/ / / 1/
i o

i A A B B o

T T T T T TT TQ
h A L k A L k A h A
− − −−

= = = =  

or 
1 2 3 31 2i o

i A B o

T T T T T TT TQ
R R R R
− − −−

= = = =  

 
where the convective resistance to heat transfer on the left side of the composite slab   

( )1/i iR h A= , and the convective resistance to heat transfer outside is ( )1/o oR h A= .  The two 

conduction resistances are ( )/A A AR L k A=  and ( )/B B BR L k A= .  As before, by writing results for 
each individual temperature difference as the product of the heat flow rate and the resistance of 

AL

1T

3T

BL

2T

A B
oT

iT

ih

oh
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that portion in the path of heat flow, and adding the temperature differences, it is straightforward 
to establish that 
 

i o

k
k

T TQ
R
−

=
∑

 

 
where the summation over the index k  involves adding the various resistances defined here.  
This result is conveniently recast as 
 

( )1/
i oT TQ

UA
−

=  

or simply as 
 

( )i oQ UA T T= −  

 
where the overall heat transfer coefficient U  is obtained from 
 

1 1 1A B
k

k i A B o

L LR
UA h A k A k A h A

= = + + +∑  

 
This equation states that the overall resistance to heat transfer, signified by ( )1/ UA  is comprised 
of contributions from each individual resistance to heat transfer in series.  Other resistances can 
be added as needed, for example when there is a thermal contact resistance between the two 
segments in a composite slab, or when fouling occurs in an industrial heat transfer situation. 
 
There is a completely analogous description that applies to mass transfer problems, where we 
shall define an overall mass transfer coefficient in a similar manner. 
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Radiation Heat Transfer 
 
Radiation heat transfer is ubiquitous, because all matter emits and absorbs electromagnetic 
radiation.  The electromagnetic radiation spectrum is huge, but heat transfer is mostly concerned 
with a small part of it, called thermal radiation. The wavelength of this radiation is in the 
approximate range of 0.1 100 mµ− , and includes the visible portion, in the approximate range of 
0.35 0.75 mµ− .  Because of the limited time we have in this course, we shall not be able to 
spend much time on radiative heat transfer.  All we can do is to introduce some definitions, and 
discuss very simple cases of radiative heat transfer between two surfaces.   
 
All matter above absolute zero emits radiation.  In a solid, radiation that is emitted by a layer is 
re-absorbed within the next few atomic layers.  Thus, our main concern in describing radiation 
heat transfer between objects is to consider radiation emitted by a solid surface and radiation 
absorbed by that surface.  We define irradiation G  as the radiant energy that is incident on a 
solid surface per unit area per unit time.  Thus, the units of G  in SI would be 2/W m .  Likewise, 
we define the radiosity J  of a surface as the radiant energy emitted by a surface per unit area per 
unit time.  The units of J  also are 2/W m . 
 
Now, we define a “black body.”  This is a surface that absorbs every bit of radiant energy that is 
incident on it, regardless of wavelength or incident angle.  It does not reflect any of the incident 
radiant energy.  Therefore, all of the radiation that leaves the surface of a black body must be 
emitted by it.  It is given by a simple relationship called the Stefan-Boltzmann Law. 
 

4J Tσ=  
 
In this equation, σ  is the Stefan-Boltzmann constant, which has a value of approximately 

( )8 2 45.6704 10 /W m K−× • , and T  is the absolute temperature of the surface in Kelvin.  
Interestingly, a nearly black body that absorbs all thermal radiation incident on it need not appear 
black to the human eye, which is sensitive to electromagnetic radiation only in a very narrow 
part of the spectrum comprising visible wavelengths. 
 
Actual surfaces are not perfectly black.  They are called “gray.”  Most practical surfaces in the 
context of heat transfer are opaque – that is they absorb a fraction of the incident radiation and 
reflect the rest.  The fraction absorbed α  is called “absorptivity” or “absorbance” and the 
fraction reflected ρ  is called “the reflectivity” or “reflectance.”  Both depend on the wavelength, 
but in a simplistic description, we integrate over all wavelengths of interest.  Because all incident 
radiation is either absorbed or reflected, the absorptivity and reflectivity of a gray surface must 
add up to unity. 
 

1α ρ+ =  
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The radiosity of a gray body is given by 4J Tε σ=  where ε  is called the “emissivity” or the 
“emittance” of the surface.  For a black body, which is a perfect emitter, 1ε = .   It is possible to 
show that the emissivity of a gray body must be equal to its absorptivity.  That is,  ε α= . 
 
Radiation heat transfer between two long and wide surfaces facing each other 
 
Consider the extremely simple case of two long and wide flat surfaces at two different absolute 
temperatures facing each other. 
 
 

     
 
 
The surface on the left is at an absolute temperature of 1T  while the surface on the right is at 2T .  
Let us assume that both are black. 
 
For surface 1, the radiosity 4

1 1J Tσ= .  What is the irradiation?  It is the radiosity of surface 2, 
because all of the radiation leaving surface 2 must fall on surface 1.  Thus, 4

1 2G Tσ= .  
Therefore, the net heat flux leaving surface 1 at steady state is given by 
 

( )4 4
1 1 1 1 2q J G T Tσ= − = −  

 
Of course, the net heat flux leaving surface 2 at steady state must be exactly the negative of this 
result. 

( )4 4
2 2 1q T Tσ= −  

In the case of gray bodies, we must introduce emissivities in the radiant energy fluxes that leave 
the two surfaces. Also, the two surfaces may not “see” only each other, if they are of finite size.   

Radiative 
exchange

1T 2T

1J

1G
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Consider body 1 with emissivity, absolute surface temperature, and surface area 1 1 1, , andT Aε , 
respectively.  It is “seeing” another body 2 with emissivity, absolute surface temperature, and 
surface area 2 2 2, , andT Aε , respectively, as shown schematically in the sketch.  Of course, only a 
part of the surface of body 1 sees a part of the surface of body 2.  To accommodate these factors, 
we write the net rate at which radiation exchange occurs from 1 to 2 as 

( )4 4
12 1 12 1 2Q A F T Tσ= −  

where 12F  is called a transfer factor that depends on the emittances of the two surfaces, the 
geometry, and the fractions of the two surfaces that see each other.  If surface 1 is completely 
surrounded by surface 2, as for example when an object is placed inside a furnace or oven, and 

1 2A A , or if surface 2 is black, then we can write 12 1F ε≈  so that  

( )4 4
12 1 1 1 2Q A T Tε σ= −  

 
Radiative Heat Transfer Coefficient 
 
If gray surface 1 is completely surrounded by gray surface 2, and the difference in temperature 

( )1 2T T T∆ = −  is much smaller than either 1T  or 2T , it is possible to make an approximation.  We 

first expand 4 4
1 2T T−  as follows. 

 
( )( ) ( )( )( )4 4 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2T T T T T T T T T T T T− = + − = + + −  
 
In the right side, we can replace ( )1 2T T+  by 2 mT  where ( )1 2 / 2mT T T= + .  We also approximate 

( )2 2
1 2T T+  by 22 mT .  Thus, 

 
 ( ) ( ) ( )4 4 3

12 1 1 1 2 1 1 1 2 1 1 24 m rQ A T T A T T T h A T Tε σ ε σ= − = − = −   

where 3
14r mh Tε σ=  is called the radiation heat transfer coefficient. 

1

212Q1 1 1, ,T Aε

2 2 2, ,T Aε
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