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In a typical experiment, we look for how a dependent parameter varies as we change a variety of 
independent parameters. By independent parameters, we mean those that we can vary 
conveniently, and the dependent parameter is the one whose behavior we seek to establish.  
Dimensional analysis permits us to organize the process by which we vary the independent 
parameters.  In fact, it helps us identify the true dependent and independent parameters in a 
situation; in the process, the number of parameters that we must consider is minimized.  But 
dimensional analysis is not foolproof – we must be careful in considering all possible parameters 
that can affect the dependent parameter.  If we omit a crucial parameter in making the list of 
independent parameters, dimensional analysis cannot help us find it.  We always need common 
sense and physical intuition in selecting the lists of parameters in a problem. 
 

Drag on a Sphere 
 
Here, by considering a simple example, I’ll show you how to use dimensional analysis.  We aim 
to develop an organized way of examining how the drag on a sphere settling through a fluid 
varies with the relevant parameters.  The first step is to identify the parameters on which the drag 

DF  is likely to depend.  These are the diameter pd  of the sphere, the density ρ  and the viscosity 
µ  of the fluid, and the settling velocity of the sphere V . 
Step 1 
 
Make a list of parameters and identify their dimensions using the fundamental dimensions of 
Mass ( )M  Length ( )L  and Time ( )T .  From now on, we’ll use the term “variables” to 
designate these parameters, but recognize that they are parameters in the usual sense of that term. 
 
Variable        Symbol       Dimension 
 
Sphere Diameter   pd   L  

Fluid Density    ρ   3

M
L

 

Settling Velocity   V   L
T

 

Fluid Viscosity   µ   M
LT

 

Drag      DF   2

ML
T
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Step 2 
 
Identify the repeat variables.  There should be as many repeat variables as there are dimensions.  
These are variables that will, in principle, appear in every dimensionless group that we form.  
The requirement is that it should not be possible to form a dimensionless group in the form of a 
product of powers of these variables.  The simplest way to meet this requirement is to select the 
repeat variables so that each has a unique dimension in it.  Also, it is helpful to choose repeat 
variables that are as simple as possible in their dimensions.  With this in mind, we choose the 
first three, namely, the diameter, density, and velocity as our repeat variables, because there are 
three dimensions in this problem.  You can see that density has Mass ( )M  appearing uniquely in 

it, and velocity has time ( )T  uniquely appearing in it, and the diameter has neither.  Therefore, it 
is not possible to use these three variables to form a dimensionless group. 
 
Step 3 
 
The number of dimensionless groups is always equal to the number of variables minus the 
number of repeat variables.  Therefore, we can expect to form two dimensionless groups in this 
problem.   The group involving the drag will be the dependent dimensionless group and that 
involving the viscosity will be the independent dimensionless group.  Each group is obtained by 
forming a product of each repeat variable to an unknown power and then multiplying by one of 
the remaining variables.  If we call these two dimensionless groups 1Π  and 2Π , then we might 
define 1Π  as follows. 
 

1
a b c
pd Vµ ρΠ =  

 
To find the values of , , anda b c  that would make this group dimensionless, first we write out the 
equation in terms of the dimensions of each side. 
 

0 0 0 1 1 3 1
3

b c
a b a b c cM M LM L T L M L T

LT L T
+ − + − + − −   = × × × =   

   
 

 
Now, match the powers of , , andM L T  on both sides.  This yields three algebraic equations for 
the exponents , , anda b c  as follows. 
 
1 0

1 3 0
1 0

b
a b c
c

+ =
− + − + =
− − =

 

 
The solution of these equations is straightforward, and the result is 1a b c= = = − .  Therefore,  
 

1
pd V
µ
ρ

Π =  
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You can verify that the group in the right side of the above result is indeed dimensionless.  Now, 
there is nothing in dimensional analysis that prevents us from using powers of this group as a 
dimensionless group in which these four variables appear.  It is conventional to invert this group 
and call it the Reynolds number. 
 
So, let us invent a new dimensionless group to replace 1Π . 
  

Reynolds Number Re pd V ρ
µ

=  

 
The Reynolds number is the most important organizing principle in fluid mechanics.  It 
represents the ratio of  a characteristic inertial force in a flow to a characteristic viscous force.  
The transition from laminar to turbulent flow in a confined geometry such as a pipe, or in a 
boundary layer,  is governed by the magnitude of the Reynolds number associated with that flow.  
In the present example of flow over a sphere, it is known that inertia effects play a negligible role 
in influencing the drag when the Reynolds number is much smaller than unity.   
 
Next, let us find the dimensionless group that includes the dependent variable DF . 
 

2
a b c

D pF d VρΠ =  
 
Again, we write out the equation in terms of the dimensions of each side. 
 

0 0 0 1 1 3 2
2 3

b c
a b a b c cML M LM L T L M L T

T L T
+ + − + − −   = × × × =   

   
 

 
As before, matching the powers of , , andM L T  on both sides yields three algebraic equations for 
the exponents , , anda b c . 
 
1 0
1 3 0

2 0

b
a b c

c

+ =
+ − + =
− − =

 

 
The solution is 2, 1, 2a b c= − = − = − .   Therefore,  
 

2 2 2
D

p

F
d V ρ

Π =  
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In practice, a dimensionless drag known as the Drag Coefficient, DC , is defined as follows. 
 

2 2

8 D
D

p

FC
d Vπρ

=  

 
The reason for the multiplicative factor ( )8 /π  is that the drag coefficient is defined as the drag 
divided by the product of the projected area of the sphere and the velocity head.  Thus,  
  

2 2
2 2

8
1

4 2

D D
D

p
p

F FC
d Vd Vπ πρρ

= =
×

 

 
Therefore, dimensional analysis tells us that the drag coefficient is a universal function of 
Reynolds number, regardless of the choice of fluid, sphere diameter or the settling velocity.   
 

( )ReDC φ=  

 
The nature of the function φ  has to be established by experiments or theory as appropriate.  The 
universality means that when we plot the drag coefficient against the Reynolds number, we 
obtain a single curve, regardless of the choice of sphere diameter, fluid, and the velocity at which 
the sphere moves through the fluid.  This is a remarkable result, because it permits us to use any 
fluid(s) of our choice to carry out the experiments to find the universal relationship between 
these two dimensionless variables, and once determined, use it to infer the drag on any sphere 
settling through any fluid at any velocity. You can see how powerful a tool this is. 
 
Figure 12.4 in the textbook by Welty et al. shows the universal curve that results for the drag on 
a sphere as a function of the Reynolds number. 
 
 
Pressure drop for steady flow of an incompressible Newtonian fluid 

through a pipe 
 
Now, let us consider a second example.  Suppose we wish to perform experiments on how the 
pressure drop for achieving the steady flow of an incompressible Newtonian fluid through a pipe 
varies depends on various parameters.  Dimensional analysis helps us determine the relevant 
dimensionless groups so that we can obtain a maximum amount of information with the smallest 
number of experiments.  As in the previous example, we proceed through the various steps in an 
organized manner. 
 
Step 1 
 
Make a list of “variables” and identify their dimensions using the fundamental dimensions of 
Mass ( )M  Length ( )L  and Time ( )T .   
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Variable        Symbol       Dimension 
 
Diameter of the Pipe   D   L  
 
Length of the Pipe   pipeL   L  

Fluid Density    ρ   3

M
L

 

Average Velocity   V   L
T

 

Fluid Viscosity   µ   M
LT

 

Pressure drop     P∆   2

M
LT

 

 
Step 2 
 
Identify the repeat variables.  Recall that there should be as many repeat variables as there are 
dimensions and that these are variables that will, in principle, appear in every dimensionless 
group that we form.  Therefore, we require that it should not be possible to form a dimensionless 
group in the form of a product of powers of these variables.  Let us choose the diameter, density, 
and velocity as our repeat variables, because there are three dimensions in this problem.   If you 
choose the length of the pipe instead of the diameter, it would be fine, but the dimensionless 
groups you will obtain will be a bit unconventional.  Note that density has the dimension of mass 
unique to it, and the velocity has the dimension of time unique to it, so that one cannot form a 
dimensionless group using the density, velocity, and the diameter of the pipe. 
 
Step 3 
 
The number of dimensionless groups is always equal to the number of variables minus the 
number of repeat variables.  We have six variables and three repeat variables.  Therefore, we can 
expect to form three dimensionless groups in this problem.   The group involving the pressure 
drop will be the dependent dimensionless group, and we shall obtain it last. 
 
As before, each group is obtained by forming a product of each repeat variable to an unknown 
power and then multiplying by one of the remaining variables.  Let us define the first 
dimensionless group 1Π  as follows. 
 

1
a b c

pipeL D VρΠ =  
 
To find the values of , , anda b c  that would make this group dimensionless, first we write out the 
equation in terms of the dimensions of each side. 
 



 6 

0 0 0 1 3
3

b c
a b a b c cM LM L T L L M L T

L T
+ − + −   = × × × =   

   
 

 
Now, match the powers of , , andM L T  on both sides.  This yields three algebraic equations for 
the exponents , , anda b c  as follows. 
 

0
1 3 0

0

b
a b c

c

=
+ − + =
− =

 

 
The solution of these equations is straightforward, and the result is 1, 0a b c= − = = .  
Therefore,  
 

1
pipeL
D

Π =  

 
Now, let us proceed to find the second dimensionless group 2Π  by including the viscosity as the 
fourth variable. 
 

2
a b cD Vµ ρΠ =  

 
To find the values of , , anda b c  that would make this group dimensionless, first we write out the 
equation in terms of the dimensions of each side. 
 

0 0 0 1 1 3 1
3

b c
a b a b c cM M LM L T L M L T

LT L T
+ − + − + − −   = × × × =   

   
 

 
Match the powers of , , andM L T  on both sides.  This yields three algebraic equations for the 
exponents , , anda b c  as follows. 
 
1 0

1 3 0
1 0

b
a b c
c

+ =
− + − + =
− − =

 

 
The solution of these equations is straightforward, and the result is 1a b c= = = − .  Therefore,  
 

2 D V
µ
ρ

Π =  

 
As in the first example, it is conventional to invert this group.  So, we shall replace 2Π  with its 
inverse, namely the Reynolds number. 
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Reynolds Number Re D Vρ
µ

=  

 
For a straight circular pipe, when the Reynolds number is less than approximately 2,300, the 
flow is laminar.  The flow undergoes transition to turbulence in the range of Reynolds numbers 
from 2,300 to 4,000, and can be considered turbulent for Reynolds number equal to or greater 
than approximately 4,000. 
 
Next, let us find the dimensionless group that includes the dependent variable P∆ . 
 

3
a b cP D VρΠ = ∆  

 
Writing out the equation in terms of the dimensions of each side, we get 
 

0 0 0 1 1 3 2
2 3

b c
a b a b c cM M LM L T L M L T

LT L T
+ − + − + − −   = × × × =   

   
 

 
Match the powers of , , andM L T  on both sides to obtain the following three algebraic equations 
for the exponents , , anda b c . 
 
1 0

1 3 0
2 0

b
a b c
c

+ =
− + − + =
− − =

 

 
The solution is 0, 1, 2a b c= = − = − .   Therefore,  
 

3 2

P
Vρ
∆

Π =  

 
Dimensional analysis tells us that ( )2/P Vρ∆  is some function of the two dimensionless groups 

( )/pipeL D  and the Reynolds number.  It cannot help us determine the actual manner in which 
this dependence occurs.  For determining that, we need to either use analysis or experiments.  
First, let us explore the dependence on the group ( )/pipeL D .    Provided the pipe is sufficiently 
long for entrance effects to be unimportant, we can see that if we double the length of the pipe, 
all else being the same, we should expect the pressure drop needed to also double.  Therefore, the 
connection between ( )2/P Vρ∆  and ( )/pipeL D  must be one of simple proportionality.  This 

means that the ratio of ( )2/P Vρ∆  and ( )/pipeL D  should be fixed if the Reynolds number is 
fixed, and can only vary if the Reynolds number is changed.  So, we can define a new 
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dimensionless group. namely, 2
pipe

P D
L Vρ
∆ , which will be a function only of the Reynolds number.   

It is conventional to introduce a multiplicative factor of 1/2 in this group, and to drop the 
subscript on the length of the pipe, simply designating it as L  to define the so-called Fanning 
Friction Factor f , as 
 

2

1
2

P Df
L Vρ
∆

=  

 
Thus, dimensional analysis, combined with some common sense thinking about how the pressure 
drop varies with the length of a tube of given diameter leads us to the following inference. 
 

( )Ref φ=  

 
The actual dependence of the friction factor on the Reynolds number must be established by 
experiment or theory or a combination thereof.  As it happens, there is one more dimensionless 
group that influences the friction factor.   If the interior wall of the pipe is not absolutely smooth, 
it is found that the friction factor is not the same as in a smooth pipe if the Reynolds number is 
sufficiently large to cause turbulent flow.  After some investigation, scientists established that if 
we define the average height of the roughness of the interior surface of the pipe as ε , then the 
relative roughness / Dε  affects the values of the friction factor in turbulent flow.  If the flow is 
laminar, then the friction factor is independent of / Dε . 
 
Figure 13.1 in the textbook by Welty et al. shows the curves that result when the Fanning friction 
factor is plotted against the Reynolds number.  Note that logarithmic axes are used, because both 
groups vary over a wide range in practice.  The importance of dimensional analysis is to show 
that regardless of the nature of the fluid, the material of the pipe, and the actual value of the 
velocity, all that matter are the values of two dimensionless groups, namely, the relative 
roughness and the Reynolds number.  These two values uniquely establish the value of the 
friction factor, from which one can calculate the pressure drop needed.  Incidentally, Welty et al. 
suggest that turbulent flow is achieved by the time the Reynolds number exceeds a value of 
3,000, but it is generally accepted that one requires a Reynolds number of 4,000 to be able to use 
friction factor correlations developed for turbulent flow.  It is best not to operate in the transition 
regime 2,300 Re 4,000≤ ≤ , because of the uncertainty in the predicted friction factor values. 
 
Chemical Engineers use the Fanning friction factor we have defined here.  There is another 
friction factor that is widely used by Mechanical and Civil Engineers.  It is called the Darcy 
friction factor, and it is four times as large as the Fanning friction factor.  Whenever you use the 
friction factor from a correlation or a graph to calculate the pressure drop, you need to check and 
make sure that you are using the correct relationship with the pressure drop for that friction 
factor. 
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Steady Heat Transfer to a Fluid Flowing Through a Circular Pipe 
 
Now, let us consider an example in heat transfer.  We wish to perform experiments on steady 
heat transfer to a fluid that is in steady flow through a circular pipe.  Our objective is to find the 
average heat transfer coefficient as a function of the various parameters in the system.  The new 
twist is the appearance of temperature differences in variables such as thermal conductivity and 
the specific heat, which are properties relevant in determining heat transfer rates.  This requires 
that we introduce a fourth dimension θ  to stand for temperature or temperature differences, 
besides the original three dimensions of Mass ( )M  Length ( )L  and Time ( )T .  Except for this 
change, we proceed exactly as we did in the earlier examples.   
 
We can expect the average heat transfer coefficient to depend on the dimensions of the tube, the 
density, specific heat, and thermal conductivity of the fluid, and the average velocity of the fluid.  
While not immediately obvious, it also will depend on the viscosity of the fluid.  This is because 
the viscosity plays an important role in the fluid mechanics, and the flow in turn plays a crucial 
role in determining the rate of heat transfer to the fluid. 
 
Step 1 
 
First, let us make a list of all the variables, along with the symbols and dimensions.  We use 

, , ,M L T and θ  for Mass, Length, Time, and Temperature Differences, respectively. 
 
Variable        Symbol       Dimension 
 
Diameter of the pipe   D   L  
 
Length of the pipe   pipeL   L  
 

Density    ρ   3

M
L

 

Velocity    V   L
T

 

Viscosity    µ   M
LT

 

Thermal conductivity    k   3

ML
T θ

 

Specific heat    pC   
2

2

L
T θ

 

Average Heat transfer coefficient h   3

M
T θ
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Step 2 
 
Identify the repeat variables.  There should be as many repeat variables as there are dimensions.  
Because we have four fundamental dimensions in this situation, we must choose four repeat 
variables. 
 
Repeat variables will, in principle, appear in every dimensionless group that we form.  The 
requirement is that it should not be possible to form a dimensionless group in the form of a 
product of powers of these variables.  The simplest way to meet this requirement is to select the 
repeat variables so that each has a unique dimension in it.  Also, it is helpful to choose repeat 
variables that are as simple as possible in their dimensions.  Here, we shall select the diameter 
( )D , viscosity ( )µ , velocity ( )V , and thermal conductivity ( )k  as our repeat variables.  You 

can see that viscosity has Mass ( )M  appearing uniquely in it, and velocity has time ( )T  

uniquely appearing in it, thermal conductivity has temperature ( )θ  uniquely appearing in it, and 
the diameter has none of these three dimensions in it.  Therefore, it is not possible to use these 
four variables to form a dimensionless group. 
 
Step 3 
 
The number of dimensionless groups is always equal to the number of variables minus the 
number of repeat variables.  Therefore, we can expect to form 4 dimensionless groups in this 
problem. The group involving the average heat transfer coefficient will be the dependent 
dimensionless group and that involving each of the other three variables (length of the pipe, 
density, and specific heat) will be the independent dimensionless groups.  Each group is obtained 
by forming a product of each repeat variable to an unknown power and then multiplying by one 
of the remaining variables. 
 
We begin with the group 1Π  containing the heat transfer coefficient. 
 

1
a b c dh D V kµΠ =  

 
To find the values of , , , anda b c d  that would make this group dimensionless, first we write out 
the equation in terms of the dimensions of each side. 
 

0 0 0 0 1 3 3 1
3 3

b c d
a c d a b c d b c d dM L M MLM L T L M L T

T T LT T
θ θ

θ θ
+ + + − + − − − − − −     = × × × × =     

     
 

 
Now, match the powers of , , , andM L T θ  on both sides.  This yields four algebraic equations for 
the exponents , , , anda b c d as follows. 
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1 0
0

3 3 0
1 0

c d
a b c d

b c d
d

+ + =
+ − + =

− − − − =
− − =

 

 
Solving these equations, we find 1, 0, 1a b c d= = = = − .  Therefore, 
 

1
hD
k

Π =   This dimensionless group is known as the Nusselt number, abbreviated as Nu .  If we 

had chosen pipeL  as a repeat variable, the group would have been /pipehL k .  In this problem, the 
key length scale is the diameter, because the important velocity variations occur across the cross-
section of the pipe, and not along the length of the pipe.  These variations exert a strong 
influence on the rate of heat transfer between the pipe wall and the fluid.  Therefore, when there 
is a choice for a repeat variable, it is sensible to choose the crucial scale involved, rather than 
make the choice arbitrarily.  In any case, after all the groups have been identified, it would be 
possible to multiply the groups to any powers we like to form new groups, so the Nusselt number 
can always be obtained as the dependent dimensionless group in the end. 
 
Now, we must systematically obtain the remaining (independent) dimensionless groups.   
Using the density ρ , define 2

a b c dD V kρ µΠ = and write out the equation in terms of the 
dimensions of each side. 
 

0 0 0 0 1 3 3
3 3

b c d
a c d a b c d b c d dM L M MLM L T L M L T

L T LT T
θ θ

θ
+ + − + + − + − − − −     = × × × × =     

     
 

 
As before, matching the powers of , , , andM L T θ  on both sides yields four algebraic equations 
for the exponents  , , , anda b c d . 
 
1 0

3 0
3 0

0

c d
a b c d

b c d
d

+ + =
− + + − + =
− − − =
− =

 

The solution is 1, 1, 1, 0a b c d= = = − = .  Therefore, 2
DVρ
µ

Π = , and we recognize this as the 

Reynolds number Re . 
 
Continuing with the specific heat pC , define 3

a b c d
pC D V kµΠ =  and write out the equation in 

terms of the dimensions of each side. 
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2
0 0 0 0 2 2 3 1

2 3

b c d
a c d a b c d b c d dL L M MLM L T L M L T

T T LT T
θ θ

θ θ
+ + + − + − − − − − −     = × × × × =     

     
 

 
Matching exponents, we obtain the set of equations  
 

0
2 0

2 3 0
1 0

c d
a b c d

b c d
d

+ =
+ + − + =

− − − − =
− − =

 

 

and the solution is 0, 1, 1a b c d= = = = − .  Therefore, 3
pC
k
µ

Π = , which is the Prandtl 

number Pr . 
 
The only remaining variable is the length of the pipe pipeL .  We can go through the formal 
procedure to find the dimensionless group 4Π , but by inspection it can be seen that it must be  

4
pipeL
D

Π = . 

 
Therefore, dimensional analysis reveals that the Nusselt number must be a function of the 
Reynolds number, the Prandtl number, and an aspect ratio /pipeL D . 
 

Nu Re, Pr, pipeL
D

φ
 

=  
 

 

 
When we perform experiments by varying the three dimensionless parameters on which the 
Nusselt number depends,  we find that for relatively long pipes, the Nusselt number based on the 
average heat transfer coefficient depends only weakly on the group /pipeL D .  This is indicative 
that the local heat transfer coefficient, which varies with position along the pipe, settles into a 
constant asymptotic value beyond a certain distance along the pipe.  This “entrance length” for 
heat transfer conditions to reach an asymptotic state depends on whether the flow in the tube is 
laminar or turbulent.  If we assume the flow to be fully-developed for the sake of simplicity, in 
laminar flow the only mechanism for radial transport of heat is conduction.  This leads to long 
entrance lengths.  In contrast, in turbulent flow, eddy transport, which permits rapid transport of 
heat across the cross-section, leads to a great shortening of the entrance length.   
 
The local heat transfer coefficient is largest near the inlet, and decreases to its asymptotic value 
at some distance from the inlet.  Therefore, in laminar flow heat transfer, it is best to use a short 
heat exchanger to take advantage of the relatively large heat transfer coefficients that prevail near 
the inlet.  In turbulent flow, the thermal entrance length is usually very short.  Therefore, 
virtually all of the heat transfer in turbulent flow occurs in the asymptotic region wherein the 
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heat transfer coefficient is constant.  Thus, you’ll not find the ratio /pipeL D  appearing in a 
typical turbulent flow heat transfer correlation. 
 
One aspect of heat transfer that we have neglected to consider is that physical properties depend 
on the temperature.  Therefore, they vary along the pipe and across the cross-section.  One 
usually selects average values between the inlet and the outlet and the wall and the fluid for use 
in calculating the dimensionless groups in the correlations.  This usually leads to reasonably 
good estimate of the heat transfer coefficient.  But, there is one property that depends strongly on 
temperature that exerts an additional influence that must be considered.  It is the fluid viscosity.  
The viscosity varies rapidly with changing temperature, especially in liquids, but the variation is 
not negligible even in gases.  You may recall that the viscosity of a liquid typically decreases as 
the temperature is increased, while that of a gas increases with increasing temperature. 
 
The variation of viscosity across the cross-section of a pipe introduces a correction to the heat 
transfer coefficient that must be accommodated.  Therefore, heat transfer correlations usually 
include a ratio of the viscosity of the fluid at the wall temperature to that at the bulk average 
temperature as another dimensionless group, besides the Reynolds and Prandtl numbers.  
 
Mass Transfer 
 
Finally, a word about the analogous mass transfer situation.  Dimensional analysis of a similar 
mass transfer problem is very similar.  Instead of thermal conductivity and specific heat, we use 
the mass diffusivity ABD , and instead of the heat transfer coefficient, we use a mass transfer 
coefficient.  If the mass transfer coefficient ck  is based on a concentration difference driving 
force, it is easily established that the dimensions of that mass transfer coefficient are ( / )L T .  
For mass transfer, the analog of the Nusselt number in heat transfer is the Sherwood Number Sh  
defined as 

c

AB

k DSh
D

=  

 
Dimensional analysis then reveals that 
 

Re, , pipeL
Sh Sc

D
φ
 

=  
 

 

 
where the Schmidt number Sc  plays a role in mass transfer that is precisely analogous to that of 
the Prandtl number in heat transfer. 
 

AB AB

Sc
D D
µ ν

ρ
= =  

 
Here /ν µ ρ=  is the kinematic viscosity of the fluid. 


