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Consider a simple situation where a pure liquid A, such as water, held in an open container, 
evaporates into air B that is flowing over the container.  A small stationary pool of liquid is 
present in a container.  The liquid is sufficiently volatile that it exerts a significant vapor pressure 
at the prevailing room temperature.  A gentle flow of air is maintained at the top so that the vapor 
is carried away by air.  The liquid is assumed to be already saturated with air, so that there is no 
net transfer of air into the liquid from the air-vapor mixture above the liquid layer.   
 

 
 
At the surface of the liquid, equilibrium is assumed between the gas and the liquid phases, so that 
the partial pressure of the vapor A in the gas phase at the interface is equal to the vapor pressure 
of the liquid at the prevailing temperature.   We assume the gas mixture to be ideal and write 
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where AP  is the equilibrium vapor pressure of A and tP  is the total pressure in the gas, assumed 
uniform throughout the system. 
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It is assumed that the evaporation rate is sufficiently small that the mole fraction of A in the air 
stream,  2Ax , remains virtually unchanged during its transit over the top of the container. 
 

( ) 2A Ax L x=  
 
At steady state, the vapor A diffuses through the gas column because the mole fraction of A at 
the liquid-gas interface, 1Ax , is larger than that at the top of the container, 2Ax .  As the liquid 
continues to evaporate, the height of the liquid column will gradually go down, and this change 
can be monitored with suitable optics.  By measuring the rate of evaporation of the liquid, we 
can calculate the diffusivity of the vapor A in the non-transferring gas B.  In order to do this, we 
wish to construct a model of the diffusion process in the gas column above the liquid surface. 
 
This problem can be approximated as one-dimensional diffusion of species A through non-
transferring species B. We can see from physical arguments, or from a shell balance over a 
differential shell in the z − direction that 
 

0A zdN
dz

=  

This means that constantA zN =  everywhere.  Of course, we do not know the value of this 

constant molar flux of A.  To determine its value, we must proceed to use the component of 
Fick’s law in the z − direction. 
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            Convective flux             Diffusive flux 
 
We had assumed that species B (air) is non-transferring.  This means that the steady flux of 
species B, 0B zN = . Note that this does not mean that B is “non-diffusing” or “stagnant” as 
described incorrectly in some textbooks.  We shall return to this topic at the end of the analysis. 
 
With 0B zN = , Fick’s law can be simplified to the following form. 
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, where 1C  is a constant.  

 
In the analogous one-dimensional conduction problem, there would be no convective transport 
term, and the gradient of temperature in the z − direction is simply a constant, leading to a linear 
temperature profile. 
 
If the mole fraction 1Ax  , which implies that the mixture of A and B in the column of gas-
vapor is dilute in A, we can simplify the above equation to 
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which yields a linear mole fraction profile in the gas-vapor column.  
 

( ) 1 2Ax z C z C= +  
 
Here, 2C  is a constant of integration.  To evaluate the two unknown constants, we can use the 
two boundary conditions 
 

( ) 10A Ax x=  

( ) 2A Ax L x=  
 
Using these conditions yields 
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Substituting for the constants and rearranging leads to the following final result for the mole 
fraction distribution of A. 
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It is seen that when the mole fraction of A is plotted against distance z  from the liquid surface, 
this result yields a straight line with constant slope.  We can evaluate the steady molar flux of A 
through the gas-vapor column from 
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Consider the analogous heat conduction problem through the same region.  If the temperature at 

0z =  is 1T , and that at z L=  is 2T , we can write the steady state conduction temperature 
distribution as 
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It is seen that this is entirely analogous to the mole fraction profile we obtained in the present 
problem.  If the thermal conductivity of the material in the region  0z =  to L  is k , we can write 
the steady heat flux zq  as follows. 
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Compare the results for the molar flux of A and the heat flux.  You can see that the heat 
conduction and diffusion problem are completely analogous, so long as the assumption we made 
that the gas mixture is dilute in A, or 1Ax  , holds.  Let us return to the original differential 
equation that we obtained for the distribution of ( )Ax z . 
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When we made the assumption that 1Ax  , we approximated ( )1 Ax−  in the denominator in the 

left side as ( )1 1Ax− ≈ .  Now, examine the Fick’s law result that we wrote for the molar flux of 

A, AzN , after setting 0BzN = . 
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            Convective flux             Diffusive flux 
 
The origin of the extra Ax  in ( )1 Ax−  is seen to be the convective flux contribution in Fick’s Law 
written for the molar flux in the laboratory reference frame.  In other words, the diffusion process 
leads to overall motion that carries all the molecules at a molar average velocity *V through the 
column.  Thus, the role of this convection arising from diffusion is minimized when the system is 
dilute in the species A, as one might logically expect.  When we retain this convection term, 
molecular diffusion is no longer analogous to conduction. 
 
If we retain the effect of convection, it is possible to integrate the differential equation for the 
mole fraction distribution and apply the boundary conditions to obtain the following final mole 
fraction distribution. 
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As you can see, this is an exponential function of z .  Thus, steady one-dimensional diffusion of 
species A through non-transferring B yields an exponential concentration profile in contrast to 
steady conduction in one dimension. 
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In this exact solution, the constant 1C  is obtained as 
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You can compare this result with ( )1 1 2 /A AC x x L= − − , a result that we obtained when we 
neglected the role of the convection that accompanies diffusion. 
 
Substituting the exact result for 1C  in the result for the molar flux of A, 
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This  can be recast as follows. 
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In the above result, we first multiplied the right side by unity in the form 1 2
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,  and then 

substituted for the mole fraction of A in terms of the mole fraction of B ( )1A Bx x= −  in the 
denominator.  This permits us to write the molar flux of A in the following final form. 
 

1 2 1 2A A A AAB AB AB
A z

Blm Blm Blm

x x c cc D D D cN
x L x L x L

− − ∆
= = =  

 
where B mx  is the log mean of the concentration of B over the diffusion path, expressed in mole 
fraction units. 
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Compare the result we just obtained for the molar flux with that in the dilute case, where we 
neglected the convection that accompanies diffusion. We see that the only difference is the 
appearance of the logarithmic average of the mole fraction of B over the diffusion path.  Because 
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B mx  must be less than unity, the flux of A  is enhanced by the convection arising from diffusion 
over that which would result if this convection is ignored. 
 
Now, let us return briefly to the term “stagnant B” used in textbooks. Because species A 
experiences a gradient in mole fraction in the gas column, species B must also experience a 
gradient in mole fraction of exactly the same magnitude and opposite sign.  Thus, species B is 
diffusing downward in the column at the same rate at species A diffuses upward.  But then, how 
is it that the flux 0B zN = ?  There is no mystery here, because species B is being carried upward 
by the motion of the entire gas mixture caused by the diffusion process.  In fact, the convective 
flux of B upward must exactly balance its diffusive flux downward to give us a net flux of zero, 
and the appearance of a “stagnant” B.  Thus, species B is neither non-diffusing nor stagnant.  It is 
diffusing in one direction, and is being carried by the overall motion in the opposite direction at 
the same rate.  A good analogy is to imagine yourself trying to walk downward in an escalator 
that is moving upward.  If you choose the right pace, you’ll find yourself staying in place, just 
like species B in this experiment. 
   
Thus, an appropriate term to use in describing this problem is “diffusion of A through non-
transferring B” and not “diffusion of A through stagnant B.” 
 


