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We already have encountered the mass transfer coefficient, defined in a manner analogous to the 
heat transfer coefficient.  It is a parameter that is used to describe the ratio between the actual 
mass (or molar) flux of a species into or out of a flowing fluid and the driving force that causes 
that flux.  For example, if a liquid flows over a solid surface that is dissolving in the liquid, one 
might write  
 

( ), ,A c A s A c AN k c c k c∞= − = ∆  

 
where ,A sc  is the concentration of the solute A in the liquid in contact with the solid surface, 
which is assumed to be the equilibrium concentration or solubility, and ,Ac ∞  is the concentration 
of A in the liquid far from the solid surface.  Here, ck  is defined as the mass transfer coefficient 
in this situation, based on a concentration driving force.  It is possible to define a mass transfer 
coefficient in the same situation using a mole fraction driving force. 
 

( ), ,A x A s A x AN k x x k x∞= − = ∆  

 
Given the geometry, the fluid and flow conditions, and the prevailing thermodynamic conditions, 
the molar flux must be the same, regardless of the type of driving force used.  Thus, in this 
example, the two mass transfer coefficients are related to each other through 
 

x A c Ak x k c∆ = ∆  
 
We define the mole fraction /A Ax c c= , where c  is the total molar concentration of the mixture.  
Thus, /A Ax c c∆ = ∆ .  Substituting in the above result yields the connection between the two 
mass transfer coefficients. 
 

x ck ck=  
 
Mass transfer coefficients depend on the relevant physical properties of the fluid, the geometry 
used along with relevant dimensions, and the average velocity of the fluid if we are considering 
flow in an enclosed conduit, or the approach velocity if the flow is over an object.  Dimensional 
analysis can be used to express this dependence in dimensionless form.  The dimensionless 
version of the mass transfer coefficient is the Sherwood number Sh . 
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where D  is a characteristic length scale in the problem, such as the diameter of a tube through 
which fluid flows, or the diameter of a sphere or cylinder over which fluid flows.  In terms of the 
mass transfer coefficient xk , we define the Sherwood number as ( )/x ABSh k D cD= . 
 
It can be shown in a relatively straightforward manner that in typical mass transfer problems, the 
Sherwood Number depends on two important dimensionless groups. One is the Reynolds 
number Re , and the other is the Schmidt number .Sc  
 

Re DV ρ
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=   
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The symbol V represents the average velocity of flow in a tube, and the approach velocity if the 
flow is over a flat plate or an object such as a sphere, ρ  is the density of the fluid, µ  is the 
dynamic viscosity, and ν is the  kinematic viscosity.  We can write 
 

( )Re, ,Sh Scφ=   
 
where the function φ  needs to be determined from experimental data or by analysis or a 
combination of both, and the ellipses ( )  represent additional dimensionless parameters such as 
the aspect ratio /L D  where L  is the length of the tube.  We already are familiar with the 
Reynolds number, but the Schmidt number is a new dimensionless group that we need to discuss 
at this stage. 
 
Schmidt number 
 
The Schmidt number plays a role in mass transfer that is analogous to that played by the Prandtl 
number in heat transfer.  From its definition, we can infer a physical significance.  
  

Ability of a fluid to transport momentum by molecular meansSc
Ability of that fluid to transport species by molecular meansABD

n
= =   

 
In gases, molecular transport of momentum and species occur by similar means, namely, by the 
random movement of molecules moving from one place to another. While some momentum is 
transmitted through molecular interactions when two molecules come close to each other, the 
major contribution is from the movement of molecules themselves, which is the only mechanism 
for species transport by molecular means.  Therefore, Schmidt numbers in gases are typically of 
the order unity.  In contrast, in a liquid, molecules are packed closely together, and diffusion is 
slow, as we know from the order of magnitude of diffusivities in liquids when compared with the 
order of magnitude of diffusivities in gases. On the other hand, momentum is efficiently 
transmitted in liquids through molecular interactions with each other. Therefore, Schmidt 
numbers in liquids are typically three orders of magnitude larger than those in gases. 
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When mass transfer occurs from a solid surface to a fluid flowing past it, a concentration 
boundary layer is formed along the solid surface, just like the momentum boundary layer.  The 
sketch given below illustrates the case for a liquid with a large Schmidt number.   
 

 
 
Just as the velocity changes in magnitude from zero at the solid surface to U∞  at the edge of the 
momentum boundary layer, the concentration of the dissolving species A changes from ,A sc at the 
solid surface, which is the equilibrium solubility at the prevailing temperature, to ,Ac ∞ , the 
concentration of the solute in the incoming stream, at the edge of the concentration boundary 
layer.  Note that when the Schmidt number is large, momentum is transported by molecular 
means across a liquid much more effectively than species.  This is why the concentration 
boundary layer is relatively thin, when compared with the momentum boundary layer.  In a gas, 
the two boundary layers would be of comparable thickness. 
 
A detailed analysis of this mass transfer problem for a laminar boundary layer leads to the 
following correlation for the average Sherwood number over the length of a plate, L . 
 

, 1/2 1/30.664 Rec average
L L
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Here, Re /L LV ν= is the Reynolds number based on the length of the plate as the length scale.  
If you examine the above correlation for the average Sherwood number, you’ll see that it is 
identical to the correlation provided for heat transfer in laminar boundary layer flow over a flat 
plate.  This analogy, of course, holds only when the motion arising from diffusion can be 
neglected, that is, when the solution is dilute.  This is a restriction that we must impose on the 
above result. 
 
Analogies among mass, momentum, and energy transfer 
 
The example problem of mass transfer in laminar boundary layer flow over a flat plate points to 
the possibility that a heat transfer experiment can be used to predict mass transfer performance, 
when the mass transfer problem involves a dilute solution. Earlier, we learned about the j −
factor introduced by Colburn (1) in the context of heat transfer.   
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The Colburn analogy permits the prediction of heat transfer performance from friction factor 
results.  A similar analogy between heat and mass transfer was proposed by Chilton and Colburn 
(2).  This analogy has been used widely by chemical engineers in mass transfer, even though 
predictions obtained using it are not always very good.  Chilton and Colburn defined a j − factor 
for mass transfer Dj  as  
 

2/3c
D

kj Sc
V

=  

and suggested that D Hj j= , so that 
 

2/3 2/3Pr c
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For an external flow, the velocity V U∞= , the approach velocity.  For flow inside a conduit,  V is  
the average velocity across the cross-section of the conduit. 
 
The Dittus-Boelter correlation for turbulent heat transfer in a circular tube can be extended to 
mass transfer in a dilute system by setting D Hj j= .  This led Linton and Sherwood to correlate 
data for turbulent mass transfer in a tube of diameter D  using 
 

0.8 1/30.023 Rec

AB

k DSh Sc
D

= =  

 
Compare this with the Dittus-Boelter correlation that we encountered earlier 
 

0.80.023 Re PrnhDNu
k

= =  

where the exponent n  is adjusted depending on whether the fluid is being heated or cooled in the 
tube, to accommodate cross-sectional variations in the fluid viscosity arising from temperature 
variations.  You will see that they are essentially the same correlation that is being applied to 
heat and mass transfer situations.  You can learn more about the analogies among momentum, 
heat, and mass transfer from Section 28.6 of the textbook by Welty et al. (3). 
 
As we noted, the analogy between heat and mass transfer is good only when mass transfer occurs 
in a dilute system in which the role of convection caused by diffusion is negligible. It is possible, 
however, to correct the mass transfer coefficient obtained in the dilute case so that it is 
approximately applicable to the case when the convection caused by diffusion is significant.  To 
learn more about this subject, you can read Section 22.8 in Bird et al. (4). 
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Lewis-Whitman Two-Film model 
 
A two-resistance model was originally proposed by Whitman (5) in 1923 and introduced as the 
two-film model for interphase mass transfer by Lewis and Whitman (6) in 1924. Lewis and 
Whitman postulated nearly motionless “films” on the two sides of the interface.  To quote from 
their article: “It is now becoming generally recognized that wherever a liquid and a gas come 
into contact there exists on the gas side of the interface a layer of gas in which motion by 
convection is slight compared to that in the main body of the gas, and that similarly on the liquid 
side of the interface there is a surface layer of liquid which is practically free from mixing by 
convection. This phenomenon is frequently expressed by assuming the existence of stationary 
films of gas and liquid respectively on the two sides of the interface.”  As we know from having 
studied fluid mechanics earlier in this course, this is not true.  The gas as well as the liquid at the 
interface are both in motion, and cannot be considered to be stationary.  On the other hand, both 
the gas and liquid at the interface move at the same velocity.  Furthermore, the regions of sharp 
concentration changes adjoining each interface (called films by Lewis and Whitman) are usually 
thin, especially on the liquid side, so that one might assume as a simple first approximation that 
the gas and liquid are both moving at the same velocity as that prevailing at the interface 
throughout these regions, and mass transfer occurs by molecular diffusion across these regions.  
This is the concept proposed by Lewis and Whitman in their two-film model, as is made clear by 
subsequent statements in reference (6).  Quoting again from the article: “In the main body of 
either liquid or gas, except under special conditions which will not be considered here, mixing by 
convection is so rapid that the concentration of solute in the fluid is essentially uniform at all 
points… On the other hand, the surface films are practically free from convection currents and 
consequently any transfer of solute through these films must be effected by the relatively slow 
process of diffusion.  These films, therefore, offer the controlling resistances to transfer of a 
material from one phase to another.”  Thus, a fictitious model that uses the ideas presented in 
their article has proved useful in interpreting data on mass transfer rates in complex geometries 
such as packed columns.  Interestingly, the article by Lewis and Whitman deals with 
interpretation of data from absorbers in which gas is bubbled through a liquid, and experiments 
in which gas is passed over a liquid body that is either quiescent or stirred.  Nowadays, such  
systems would be modeled using more sophisticated descriptions. As an aside, Lewis and 
Whitman (6) use the term “diffusion coefficient per unit area” to describe what we would now 
call a “mass transfer coefficient.”   
 
Now, we shall return to packed columns. A packed column consists of solid particles of a variety 
of shapes, termed “the packing,” that are distributed inside a cylindrical column.  Figure 31.4 in 
the textbook by Welty et al. (3) provides sketches of some common types of packings used.  
Typically, a packed column is vertical, and liquid flows down the column covering the surface of 
the packing particles and forming a liquid film on this surface that flows downward.  During this 
downward transit, the liquid meets the gas mixture, which flows upward through the interstitial 
spaces among the particles of packing.  In gas absorption operations, the gas introduced at the 
bottom of the column is rich in a component that we want to remove from the gas mixture by 
dissolution into the liquid; this dissolved gas is taken away with the liquid that exits the column 
at the bottom.  The liquid enters the column with none of this dissolved gaseous solute, or only a 
small concentration of it, so that it can absorb the solute during its passage through the column.  
Because the rate of mass transfer between the two phases depends on the area of contact, the 
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liquid is spread around the surfaces of the packing particles to increase the area of contact as 
much as possible.  Packed columns also are used in distillation, ion exchange, and several other 
important mass transfer operations.  You’ll learn more about packed columns in a subsequent 
course CH370: Transfer Process Design.  Here, we shall focus on the two-film model that is used 
to interpret mass transfer data from such equipment.  At the outset, it is worth noting that the 
description of mass transfer rates we shall use does not require the concept of “stationary films” 
or even the film concept. Thus, the two-film picture of Lewis and Whitman is presented here 
mainly for historical reasons. 
 
The sketch schematically shows the process of mass transfer between the gas and the liquid at 
some point inside the column.  We are looking at just a small portion of the surface of a packing 
particle somewhere in the column.  As noted earlier, the liquid flows down the surface of a 
packing particle, shown on the right and magnified to make it look flat.   
 
 

 
 
In the two-film model, it is assumed that all the resistance to mass transfer is confined to regions 
adjoining the interface that are called “films.”  There is a gas film on the gas-side and a liquid 
film on the liquid-side in the sketch.  The liquid that covers the surface of a packing also is called  
a film in fluid mechanics, but this should not cause any confusion in the present discussion.  As 
noted earlier, the liquid phase and gas phase “films” adjoining the interface in the model are 
entirely fictitious, and are invented just to model mass transfer in a simple way.  When we say 
the resistance on each side is confined to the film, what we mean is that outside these films, the 
fluid is assumed to be completely mixed and at a uniform concentration, labeled the “bulk 
concentration” at that location.  So, at this particular location in the absorption column, the bulk 
liquid concentration is ,A Lc .  Likewise, the partial pressure of the soluble species A in the well-
mixed bulk gas phase is ,A Gp .  We assume that at the interface between the gas and liquid, 
thermodynamic equilibrium prevails.  What does this mean?  Imagine bringing the gas mixture 

Well-mixed bulk liquidWell-mixed bulk gas

Gas film
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and the liquid together in a closed container kept at a certain fixed temperature and pressure.  
Under these conditions, eventually, gas A will saturate the liquid at the prevailing conditions, 
and there will be a dynamic equilibrium concentration of A in the liquid, which we shall label 

,A ic . This equilibrium concentration corresponds to the partial pressure of A in the gas phase, 

,A ip  at the prevailing temperature. By varying this partial pressure of A at that fixed temperature, 
we can vary the equilibrium concentration of A that would be obtained in the liquid.  These data 
points are usually plotted in the form of an equilibrium curve, and fitted to a suitable model that 
describes the compositions in equilibrium. 
 

       
 
In the textbook by Welty et al. (3), the partial pressure and liquid-phase concentration at points 
along this curve are related through Henry’s law in Figures 29.4 and 29.5, but this is not 
necessary at this stage.  All that matters from our perspective is that points on the equilibrium 
curve represent the equilibrium concentration of A in the liquid corresponding to the partial 
pressure of A in the gas.  Sometimes, to designate the fact that the two concentrations are in 
equilibrium, an asterisk is used, as for example, when we use the notation ( )* *,A Ac p  to designate 
a point on the equilibrium curve.  Here, we shall assume the interfacial compositions are in 
equilibrium, and use the subscript i  to designate those compositions. 
 
The key idea to grasp is that it is departure from equilibrium that drives mass transfer.  Thus, the 
partial pressure of A in the bulk gas phase must be larger than ,A ip  for A to diffuse from the bulk 

to the interface.  That is, , ,A G A ip p> .  Likewise, for species A to diffuse from the interface to 

the bulk liquid phase, there must be a concentration driving force.  Therefore, , ,A i A Lc c> .   

These features are shown in the sketch used here to represent the two-film model.  The 
concentration distribution in the film is not known at this point, and is shown by a suitable  curve 
in each film.   
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In the equilibrium diagram, I have shown both the equilibrium point ( ), ,,A i A ic p  and the point 
representing the compositions in the bulk gas phase and the bulk liquid phase that are in contact 
at the given location in the absorption column ( ), ,,A L A Gc p .  You can see that this latter point 
must lie to the left of and above the equilibrium curve to satisfy the inequalities we have noted.  
If the gaseous species A were being removed from the liquid by a gas that contains very little A 
(a process known as stripping), the driving forces would be in the opposite direction in each 
phase and this point would then lie to the right of and below the equilibrium curve. 
 
What is the slope of the line joining the two points ( ), ,,A L A Gc p  and ( ), ,,A i A ic p ?  It is possible to 
write this slope in terms of the individual phase mass transfer coefficients at the given location.  
We can write the molar flux of A in the gas film as 
 

( ), ,A G A G A iN k p p= −  

where Gk  is the mass transfer coefficient for partial pressure driving forces in the gas phase.  We 
assume steady operation so that this flux AN  remains constant throughout the gas “film.”  This 
flux of A has to enter the liquid, because A cannot accumulate at the interface, which has no 
volume.  At steady state, AN  must remain constant throughout the liquid “film.”  We can write 
this molar flux of A that crosses over into the liquid phase as 
 

( ), ,A L A i A LN k c c= −  
using a liquid-phase driving force.  We have adopted the convention that this liquid-phase mass 
transfer coefficient should be designated Lk  to maintain consistency with common notation in 
absorption problems, even though the designation ck  would be equally acceptable.  Equating the 
results for AN  in the two phases yields 
 

( ) ( ), , , ,A G A G A i L A i A LN k p p k c c= − = −  

so that we find the slope of the straight line joining the two points ( ), ,,A L A Gc p  and ( ), ,,A i A ic p  to 
be given by 
 

, ,

, ,

A i A G L

A i A L G

p p k
c c k

−
= −

−
 

 
as displayed in the sketch on the following page. 
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Overall mass transfer coefficients 
 
No doubt you remember the concept of the overall heat transfer coefficient.  When heat transfer 
occurs through resistances in series, we employ the overall heat transfer coefficient in the rate 
equation, along with the overall driving force.  The reason for using the overall driving force is 
usually that it can be measured more easily than the driving forces in individual phases.  
Likewise, in mass transfer, we cannot expect to know the interfacial compositions at various 
locations in a column, but the bulk concentrations can be measured. Furthermore, it is the change 
in these bulk concentrations from one end to the other that is of interest in determining how 
much of a species has been transferred from one phase to another in a column.  Therefore, it 
would be good to be able to write the molar flux AN  in terms of the difference between the 
compositions of the two bulk phases. The immediate problem you’ll notice is that the 
compositions are measured in entirely different units in the two phases.  This problem will not be 
resolved even if we use molar concentration units (or mole fractions) in both phases, because in 
phase I, it would be moles of A per mole of phase I, and likewise in phase II, it would be moles 
of A per mole of phase II. It would be like mixing apples and oranges to use differences in these 
concentrations.  Thus, we must be creative in coming up with an overall driving force for mass 
transfer. 
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Let us examine the equilibrium diagram again, but this time with a couple of additional points 
marked on it. 
 

    
 
You’ll notice that the additional points are ( )*

, ,A L Ac p  and ( )*
,,A A Gc p .  The partial pressure *

Ap  is 

the equilibrium partial pressure corresponding to the bulk liquid phase concentration ,A Lc .  

Likewise, the concentration *
Ac  is the equilibrium concentration in the liquid that would 

correspond to the partial pressure of A in the bulk gas phase, ,A Gp .   
 
Let us first consider *

Ap .  This is a unique partial pressure that can be used as an equivalent gas 
phase partial pressure corresponding to the bulk liquid phase concentration ,A Lc . Thus, an overall 
driving force for mass transfer can be written purely in gas phase partial pressures of A as 
( )*

,A G Ap p− .  We can now express the molar flux in terms of this overall driving force for mass 
transfer and an overall mass transfer coefficient. 
 

( )*
,A G A G AN K p p= −  

where GK  is termed the “overall mass transfer coefficient based on gas phase driving forces.”  In 
an equivalent manner, we also can write 
 

( )*
,A L A A LN K c c= −  

 where LK  is termed the “overall mass transfer coefficient based on liquid phase driving forces.” 
It is fine to use either LK  or GK  to describe the rate of mass transfer.  Sometimes, the choice is 
made based on which resistance dominates.  We shall discuss this issue shortly.  First, we must 
find a way to relate these overall mass transfer coefficients to the individual phase mass transfer 
coefficients we used earlier.  For this, we need to have a suitable mathematical connection 
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between the equilibrium partial pressure and the concentration in the liquid phase.  For this 
purpose, we assume the solutions are dilute, and use Henry’s law. 
 

*
,A G Ap m c=  

 
where m  is the Henry’s law constant.  Henry’s law assumes that the equilibrium curve is a 
straight line. 
 
Now, let us work out a connection among , , andG G LK k k .  First, we rewrite ( ), ,A G A G A iN k p p= −   

as , ,
A

A G A i
G

Np p
k

− = .  Likewise, rewrite ( ), ,A L A i A LN k c c= −  as , ,
A

A i A L
L

Nc c
k

− = .  Now, substitute 

the equilibrium relationships in this result, replacing ,A ic  with , /A ip m , and ,A Lc  with * /Ap m  to 

obtain *
,

A
A i A

L

m Np p
k

− = .   Add the two partial pressure differences to obtain 

* *
, , , ,

1A A
A G A i A i A A G A A

G L G L

N m N mp p p p p p N
k k k k

 
− + − = − = + = + 

 
 

 
But we already know that the overall driving force in terms of gas phase partial pressures of A 
can be written in terms of the molar flux and the overall mass transfer coefficient GK  as 
 

*
,

A
A G A

G

Np p
K

− =  

 
Thus, we obtain a connection among the individual mass transfer coefficients and the overall 
mass transfer coefficient as 
 

1 1

G G L

m
K k k

= +  

 
Each term here can be interpreted as a resistance to mass transfer.  The left side is the overall 
resistance; the first term on the right side represents the gas phase resistance, and the second term 
the liquid phase resistance. 
 
In a completely analogous development, we can obtain the following result for the overall mass 
transfer coefficient based on liquid phase driving forces. 
 

1 1 1

L G LK mk k
= +  
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The same interpretation applies to this result.  The left side represents the overall resistance to 
mass transfer, while the first term in the right side stands for the gas phase resistance, and the 
second term, for the liquid phase resistance. 
 
The following results can be obtained immediately from the above. 
 

1/resistance to mass transfer in the gas phase
total resistance to mass transfer 1/

G

G

k
K

=  

 
1/resistance to mass transfer in the liquid phase

total resistance to mass transfer 1/
L

L

k
K

=  

 
When one or the other resistance dominates, it is called the controlling resistance.  As a general 
rule, for highly soluble gases, the mass transfer process is likely to be gas-phase controlled, 
whereas for sparingly soluble gases, it might be liquid-phase controlled.  These are general 
statements, with exceptions that can occur, depending on the relative magnitudes of the 
individual phase mass transfer coefficients and the Henry’s law constant.  If the gas phase is pure 
A, then there is no resistance to diffusion in the gas phase, and the entire resistance lies in the 
liquid phase, that is, 1/ 0Gk = .   
 
Film model 
 
You may have noticed that the properties of the “films” in the gas and liquid phases were never 
used in the above development, nor was the postulate made by Lewis and Whitman that these 
films are stationary.  In fact, as you can see from the above development, the film model is not 
necessary for developing rate equations based on overall mass transfer coefficients, nor for 
relating those overall mass transfer coefficients to the individual phase mass transfer coefficients 
through the use of an equilibrium relationship and some algebra. But it is usually introduced in 
this context.  Why then do we need the film model? 
 
The film model becomes useful when we need to extrapolate mass transfer information obtained 
from experiments on dilute systems to mass transfer in concentrated systems wherein the 
convection caused by diffusion is important, or to multicomponent mass transfer situations in 
which Fick’s law cannot be used, or to mass transfer with chemical reaction.  In all these cases, a 
simple film model in each phase is used to relate the rate of mass transfer to the concentration 
driving force in that phase and the film thickness. This permits one to relate the fictitious film 
thickness in a phase directly to the mass transfer coefficient in that phase. Thereafter, 
experiments that permit the correlation of the Sherwood number, which is the dimensionless 
version of the mass transfer coefficient in a phase, with groups such as the Reynolds and 
Schmidt numbers, allow one to infer the way the fictitious film thickness in that phase, made 
dimensionless using a length scale, is to be correlated with these groups.  The film model is then 
used with the same film thickness to predict mass transfer rates in concentrated systems, 
multicomponent systems, or chemically reacting systems.  This is where the model has 
predictive capability.  You can learn more about this topic from Bird et al. (4).   
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Penetration model 
 
A key prediction of the film model is that mass transfer rates depend on the first power of the 
diffusivity.  While this is consistent with experimental observations in certain mass transfer 
situations, other mass transfer systems exhibit a dependence of the rate on the square root of the 
diffusivity.   Higbie (7) appears to have been the first to present a logical picture of mass transfer 
for short contact times between a gas and a liquid that leads to this square root dependence.  
Higbie was concerned with situations such as when a gas bubble rises through a liquid, as in 
bubble absorbers, and those in which a liquid is sprayed as fine drops into a gas, as in spray 
absorbers. Also, Higbie envisioned that in a packed absorber, the liquid and gas come into 
contact for short periods when the liquid flows over a single piece of packing.  He assumed that 
subsequently each phase becomes well-mixed before passing on to the next piece of packing.  In 
all these cases, the key idea is that of short contact times between the two phases. Because 
liquid-phase diffusivities are small, the distance to which the absorbed gas penetrates into the 
liquid film is small when the contact time is small as well.  Within this concentration boundary 
layer, the fluid velocity can be assumed to be uniform so that the entire region of liquid into 
which the dissolved gaseous species penetrates moves like a solid body into which unsteady 
diffusion occurs.  Using such ideas, Higbie was able to show that the mass transfer rate in this 
situation is actually proportional to the square root of the molecular diffusivity of the dissolving 
species in the liquid.  Higbie also performed experiments on long gas bubbles that were forced 
downward through a vertical glass tube filled with the liquid to verify these predictions.  
Higbie’s model has come to be known as the “penetration model” of mass transfer.  In certain 
mass transfer experiments, it provides a better description of the results than the film model.  
You can learn more about the film model and the penetration model from Section 28.7 in the 
textbook by Welty et al. (3). 
 
Mass transfer correlations 
 
Chapter 30 of the textbook by Welty et al. (3) provides a variety of correlations for the Sherwood 
number for mass transfer to plates, spheres and cylinders, mass transfer in flow through pipes 
and in wetted-wall columns, mass transfer in packed and fluidized beds, and mass transfer in 
stirred tanks.  You are encouraged to look through this chapter to learn about these correlations 
that you can use when working on the design of mass transfer equipment.  Another good  
resource for mass transfer correlations is a book by Sherwood, Pigford, and Wilke (8). 
 
 
References 
 
1. A.P. Colburn, Trans. AIChE 29, 174-210 (1933). 
 
2. T. H. Chilton and A.P. Colburn, Ind. Eng. Chem. 26, 1183-1187 (1934). 
 
3. J.R. Welty, G.L. Rorrer, and D.G. Foster, Fundamentals of Momentum, Heat, and Mass 
Transfer, Sixth Edition, Wiley, New Jersey, 2014. 
 



14 
 

4. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Second Edition, Wiley, 
New York, 2007. 
 
5. W.G. Whitman, Chem. Met. Eng. 29, 146 (1923). 
 
6. W.K. Lewis and W.G. Whitman, Ind. Eng. Chem. 16, 1215 (1924). 
 
7. R. Higbie, Trans. AIChE 31, 365-389 (1935). 
 
8. T.K. Sherwood, R.L. Pigford, and C.R. Wilke, Mass Transfer, McGraw-Hill, New York 
(1975). 
 


