
 1 

The Equation of Conservation of Mass 
 

R. Shankar Subramanian 
Department of Chemical and Biomolecular Engineering 

Clarkson University 
 
 
Based on observation, one can postulate the idea that mass is neither created nor destroyed.  In 
other words, it is conserved.   This is termed the Principle of Conservation of Mass.  This 
principle is applied to a fixed volume in space of arbitrary shape that contains fluid.  This volume 
is called a “Control Volume.”  Fluid is permitted to enter or leave the control volume.  
 
A control volume V  is shown in the sketch. 

 

 
 
 
 

 
 
 
 

 
 
 
 
We also have marked the bounding surface A of this control volume, called the control surface 
(CS) and shown an element of surface area dA  and the unit outward normal (vector) to that area 
element, n .   
 
 One can make similar statements about energy and momentum, being careful to accommodate 
ways in which energy or momentum can enter or leave a fixed volume in space occupied by a 
fluid.  These conservation statements are put in mathematical form and termed “integral 
balances.”  These balances  include statements of conservation of mass, energy, and momentum, 
and will prove useful in a variety of problems.  For example, conservation of mass allows us to 
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estimate the rate of change of the level of liquid in a process vessel or the rate at which the 
amount of gas left in a tank decreases due to leakage.  Conservation of mass and energy allow us 
to size pumps and turbines, and help in the evaluation of flow rates using flow measurement 
devices.  Conservation of momentum is used in calculating the forces on the supports used for 
pipe bends and the forces flange bolts need to withstand.   Also, by using these balances together, 
one can calculate the losses in a sudden expansion, design a jet ejector, and make calculations 
involving pipe manifolds. 
 
Now, we shall proceed to express the idea that the total mass in the control volume that is shown 
on page 1 is conserved. 
 
Rate of increase of mass of material within the control volume = Net rate at which material 
enters the control volume. 
 
Let us write a mathematical representation of the above statement.  If we designate the total mass 
of material in the  control volume as M and the net rate of entry of mass into the control volume 
as m , conservation of mass can be written as 
 

 dM m
dt

=   (1) 

 
Now, we need to work out suitable results for the left and right sides of the above equation.  If 
we consider a differential volume dV , the mass of fluid in that volume is obtained by 
multiplying the volume by the local density at that point ρ .  By adding up all the differential 
volumes within the total volume V , we can obtain the total mass of fluid M .   Therefore, we 
can write 
  

 
V

M dVρ= ∫  (2) 

 

The time rate of change of this mass is then dM
dt

.  Therefore,  

 

 
V

dM d dV
dt dt

ρ= ∫  (3) 

 
Now, we need to develop a result for the net rate of entry of fluid into the control volume 
through the control surface.  For this, we consider the differential area element dA .  If the 
velocity vector is V , the component of this velocity that is directed into the control volume is 
given by − •V n , because the unit normal vector n  points outward from the control volume.  
This result, multiplied by the area of the element dA , gives the volumetric rate at which fluid 
enters the control volume through this area element, labeled dQ . 
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 dQ dA= − •V n  (4) 
 
The corresponding rate at which mass enters the control volume through the area element dA , 
labeled dm , can be written as 
 
 ( )dm dQ dAρ ρ= = − • V n  (5) 
 
Adding up all the contributions from the differential area elements, which implies integration 
over the entire control surface, leads to a result for the net rate of entry of mass into the control 
volume. 
 

 ( )
CS

m dAρ= − •∫ V n  (6) 

  
Now, we can rewrite the principle of conservation of mass, given in Equation (1) as 
 

 ( )
CS

dM dA
dt

ρ= − •∫ V n  (7) 

Rate of   Rate of net inflow of mass 
increase of  into the control volume 
mass M in  
the control volume 

 
where we have identified the physical meaning of the terms in the left and right sides of the 
equation. 
 
In a steady state situation, the time rate of change of the mass of material in a control volume is 
zero.  In this case, we simply obtain  
 

 ( ) 0
CS

dAρ • =∫ V n  (8) 

 
Physically, this result implies that the influx of mass into the control volume must equal the 
efflux of mass at steady state. 
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Here is an example of how we may use this statement of “Conservation of Mass” at steady state.  
A fluid is in steady flow through a pipe of changing cross-section as shown in the sketch.  
 
 

 
 
Location 1 is at the inlet and location 2 is at the outlet.  Assume the velocity profiles are flat.  
The control volume is indicated by the dashed boundary.  It is shown as being slightly separated 
from the physical boundary only for clarity.  In reality, its surface coincides with the physical 
surface of the pipe.  Note that there is no flow through  most of the control surface, that is, 

0• =V n .  There is flow only at the inlet (1) and exit (2).  At the inlet surface the velocity points 
in a direction opposite to that of the normal vector.  Therefore, •V n becomes 1V− .   In a like 
manner, at the exit surface, the velocity points in the same direction as the normal vector which 
leads to •V n becoming 2V .  Because 1V  and 2V  are assumed to be constant across the 
surfaces involved, the integrals are easy to evaluate and we get 
 
 1 1 1 2 2 2 0V A V Aρ ρ− + =  (9) 
 
or 
 1 1 1 2 2 2V A V Aρ ρ=  (10) 
 
The product of the uniform velocity and the area is the volumetric flow rate Q .  Therefore, we 
can rewrite this as 
 
 1 1 2 2Q Qρ ρ=  (11) 
 

1n
1 1 1, ,V Aρ 2 2 2, ,V Aρ

2n
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The mass flow rate m Qρ=  so that 1 2m m m= =    is constant. If the density is constant, the above 
relationship reduces to 1 2Q Q= .  This assumption of constant density is known as the 
assumption of  “incompressible flow.”  Even though the concept of incompressibility refers to 
changes in density associated with pressure changes, the term is used loosely to signify “constant 
density.”   
 
In isothermal single-component liquids, the assumption of constant density is nearly always an 
excellent one to make.  In the case of gases flowing at velocities that are small compared with  
the speed of sound in the gas, it continues to be a good assumption.   When density changes in a 
fluid caused by pressure, temperature, or composition variations are significant when compared 
with the average density, a precise calculation must accommodate such density variations. 
 
Accommodating Velocity Variation Across the Cross-Section 
 
In the simplification of the principle of conservation of mass, we assumed the velocity profile to 
be flat at the inlet and the exit.  Realistically, the velocity of a fluid satisfies the no-slip condition 
at a solid boundary, and varies across the cross-section.  This variation of velocity can be easily 
accommodated by using an average velocity avV in Equations (9) and (10).   The average 
velocity across the cross-section is defined as follows. 
 

 1A
av

A

A

dA
QV dA
A A

dA

•
= = = •

∫
∫

∫

V n
V n  (12) 

In Equation (12), the cross-sectional area A  is oriented normal to the direction of flow, and n  is 
a unit normal to the area in the direction of flow.  The symbol dA  stands for a differential area 
element.  As an example, for a circular tube of radius R , in which the velocity distribution ( )V r  
is symmetric about the tube axis, the cross-section and differential area 2dA rdrπ=  are 
illustrated in the sketch below.  
 
    

  

r
drR

Ring of area 2dA rdrπ=
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Applying the definition given in Equation (12) yields 
 

 ( ) ( )2 2 2
0 0

1 22
R R

av
QV rV r dr rV r dr
R R R

π
π π

= = =∫ ∫  (13) 

 
Two example problems are considered next.  The first example involves using the steady version 
of the equation of conservation of mass to make calculations involving a natural gas pipeline 
(source: Fluid Mechanics for Chemical Engineers by Noel de Nevers).  The second example 
shows how to use the unsteady version of the equation of conservation of mass to calculate the 
rate of change of the height of liquid in a tank. 
 

 
 
 
This is a long pipeline, which is shown schematically.  The natural gas flows through a section of 
circular pipe of diameter 2.00 feet for some distance, and then through a larger section of circular 
pipe of diameter 2.50 feet.  The pressure and temperature at locations 1 and 2 are specified.  We 
need to find the velocity at location 2, and the mass flow rate at location 2.   
 

Example 1 -- Natural Gas Pipeline

1 2

2 2Find ,m V

1 2.00D ft= 2 2.50D ft=

1 33.7 /V ft s= 2 ?V =

1 820p psia= 2 450p psia=

1 70T F= 

2 58T F= 

( )
( )

2 3/
Gas Constant 10.73 f

g

lb in ft
R

lb mole R
•

=
• 

Molecular Weight 16 lb
lb mole

=
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At steady state, the mass flow rate remains the same throughout the pipeline because there is no 
accumulation of mass within the section of the pipeline shown with time.  Therefore, the mass 
flow rate is the same at locations 1 and 2.  The velocities are actually averages across each cross-
section.  The control volume is the interior of the pipe from the inlet at location 1 to the outlet at 
location 2.  It hugs the pipe wall, but is shown slightly separated from it as is customary, so that 
the dashed line can be seen. 
 
The steady state mass balance is  1 2m m m= =   , which can be rewritten as 
 

1 1 1 2 2 2V A V Aρ ρ=  
 
Therefore, our first task is to calculate the densities at the inlet and the exit.  For this, we shall 
use the perfect gas equation (also known as the ideal gas law).  This can be written in the present 
context as 
 

/
w

g w g

p Mp
R M T R T

ρ = =  

where, p  is the prevailing pressure, gR  is the universal gas constant, wM  is the molecular 
weight of the gas, and T  is the absolute temperature. 
 

At location 1, 1 2820 flb
p

in
=  and the absolute temperature is 1 70 459.7 530T F R= + =  , when 

rounded to three significant figures.  The value of the universal gas constant is given in the 

problem statement as 
( )
( )

2 3/
10.73 f

g

lb in ft
R

lb mole R
•

=
• 

  , and the molecular weight of natural gas is 

given as 16 lb
lb mole

.  Using all this information, we find the density at location 1 to be  

 
( ) ( )
( ) ( )
( ) ( ) ( )

2
1

1 32 3
1

820 / 16 /
2.31

/
10.73 530

fw

g f

lb in lb lb molep M lb
R T ftlb in ft

R
lb mole R

ρ
×

= = =
•

×
•





 

 

At location 2, the pressure is 2 2450 flb
p

in
=  and the temperature is 2 58 459.7 518T F R= + =  .  

Therefore, we can find the density 2ρ  using 
 

( )
( )

2
1 2

2 1 3 32
2 1

450 /5302.31 1.30
518 820 /

f

f

lb inT p lb R lb
T p ft R ftlb in

ρ ρ
 

= = × × = 
 





 

 
The two areas can be found from the diameters. 
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( )22 2
1 1 2.00 3.14

4 4
A D ft ftπ π
= = × =  

 

( )22 2
2 2 2.50 4.91

4 4
A D ft ftπ π

= = × =  

 
Let us find the mass flow rate. 
 

( )2
2 1 1 1 1 32.31 33.7 3.14 244lb ft lbm m m V A ft

ft s s
ρ

   = = = = × × =   
  

    

 
Now, we can calculate the velocity 2V  from 
 

( )
( ) ( )

2
2 3 2

2 2

244 /
38.2

1.30 / 4.91
lb sm ftV

A slb ft ftρ
= = =

×


 
 
Is the liquid level in the above tank rising or falling?  How fast? 
 
To solve this problem, we must use the unsteady version of the conservation of mass equation 
applied to a control volume that is shown in the sketch using a dashed line.  The control volume 
occupies the entire interior of the tank, including the inlet and exit pipes.  There is an entrance to 
the control volume at location 1 and an exit at location 2.  Liquid flows into the tank at location 1 
and flows out at location 2, as shown in the sketch.  We begin with 

Example 2 – Unsteady Mass Balance

1
2

Free surface

Dia 2D m=

1 1.5 /V m s=

2 1.0 /V m s=1 5D cm=

2 8D cm=

h
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( )
CS

dM dA
dt

ρ= − •∫ V n  

where ( )M t  is the mass of the liquid in the control volume, which depends on time t .  The 
density of the liquid ρ  can be assumed to be constant.     
 
We can write the mass content in the control volume as the sum of the mass of the liquid in the 
tank,  given by ( ) ( )2/ 4 D h tπ ρ , and the constant mass in the inlet and outlet pipe sections that 
are contained the control volume, termed C .  The integral on the right side of the unsteady mass 
conservation equation works out to ( )1 2Q Qρ − .  Using this information, the unsteady mass 
conservation equation becomes 
 

( )2 2
1 24 4

d dhD h C D Q Q
dt dt

π πρ ρ ρ + = = − 
 

    or  

 
( )1 2

2

4 Q Qdh
dt Dπ

−
=  

 
Therefore, we must calculate the numerical value of the right side in the above equation.  The 
areas of the inlet and outlet can be calculated as follows. 
 

( )22 3 2
1 1 0.05 1.96 10

4 4
A D m mπ π −= = × = ×  

( )22 3 2
2 2 0.08 5.03 10

4 4
A D m mπ π −= = × = ×  

 
Therefore, the volumetric flow rates are  

( )
3

3 2 3
1 1 1 1.5 1.96 10 2.94 10m mQ V A m

s s
− − = = × × = × 

 
 

( )
3

3 2 3
2 2 2 1.0 5.03 10 5.03 10m mQ V A m

s s
− − = = × × = × 

 
 

 
Substitute the above information in the differential equation for the height of the liquid in the 
tank. 
 

( ) ( )
( )

3 3 3
1 2 4

22

4 2.94 10 5.03 10 /4
6.66 10

2.0

m sQ Qdh m
dt D smπ π

− −
−

× − ×−
= = = − ×   

 
Because the rate of change of the height of liquid in the tank is negative, the liquid level is 
falling.  


