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We examined the “Friendly Integer” problem first stated in [3]. A pair
(m,n) is called a friendly pair if o(n)/n = o(m)/m where o(n) is the sum
of all the divisors of n. In this case, it is also common to say that m is a
friend of n, or simply that m and n are friends. For convience, we define
the function 6(n) = o(n)/n. This is often called the abundacy or the index
of a number. Perfect numbers have abundancy 2, and thus are all friends.
Numbers with abundancy less than 2 are often called deficient, while numbers
whose abundancy are greater than 2 are called abundant [6]. The original
problem was to show that the density of friendly integers in N is unity, and
the density of solitary numbers (numbers with no friends) is zero. Also note,
that any variables will be positive integers unless stated otherwise. The two
letters p and ¢ will represent prime integers throughout the paper.

We used two main approaches: one was an analysis of the ¢(n) function,
while the other used number theoretic arguments to find a representation
for a friend of 10. In [3], it was shown that 10 is the smallest number where
it is unknown whether there are any friends of it. We will assume a basic
understanding of the function o(n). This can be found in [2]. For more on
number theoretic techniques, see [1].

We discovered many useful properties of 6(n):

1. 6(nm) = a(n)a(m) if ged(m,n) =1
2. 6(n) >1forn>1
3. For prime p, integers a > b, 6(p*) > 6 (p?)

4. For primes p < ¢, 6(p*) > 6(q%)



Proof. 1. o(n)is weakly multiplicative, therefore o(nm)/nm = (o(n)/n)(c(m)/m) =
d(n)o(m) when ged(m,n) =1

2. This follows directly from o(n) > n for n > 1
3. In [3], it was shown that 6(p®*!) > 6(p®), this is a natural generalization
4. Show that d(p®) decreases for larger primes, suppose ¢ > p:

R N R AR N A s
P° q

o(p*) —o(q")
It is enough to show that
I+p+p*+...+p) —p"(L+qg+@+...+¢%) <0
Regroup the terms
(¢ = p") + (@p — ") + (¢"P* = p"¢*) + ... + (¢"p" — p"q")

= (¢" = p") +ap (@ =) PP (TP =)+ gt (1-1) <0
—— ~—— —_—— ——
<0 <0 <0 =0

O

Some of these properties can be generalized further, but these will be our
building blocks to prove bigger results.

Proposition 1. 6(n) < d(an) for a > 1

Proof. In general, a can share prime factors with n. Let a = Im where
ged(a,n) = 1, ged(m,n) = 1. We thus have ¢(an) = &(In)a(m) by property
1. Property 2 gives

d(an) = a(In)o(m) > a(ln)
Now property 3 gives us
a(ln) > a(n)
Thus

a(an) > a(n)
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Corollary 1. When a = n® we get a generalization of property 3: 6(n’) <

o(nk) for j < k.

Note that property 4 is not true for general x > y.

Using these tools, we analyzed whether 10 has a friend and what forms
that friend can and cannot take. Notice that (10) = 9/5. We can easily
deduce that a friend of 10 must be of the form n = 5*m otherwise 6(n) could
not reduce to the fraction 9/5.

Lemma 1. A friend of m cannot be a multple of m. That is 6(m) # 6(am)
fora>1.

Proof. This follows directly from Propostion 1. Since am is a multiple of m,
a(am) > a(m), so a(am) # a(m). O

Corollary 2 (Even Corollary). A friend of 10 cannot be of the form n =
295°m. Thus a friend of 10 cannot be an even integer.

Proof. For a,b > 1, 2°5° is a multiple of 10, and thus so is n = 25’m.
Therefore n is not a friend of 10. A friend of 10 must be of the form 5m, so
a friend of 10 cannot be an even integer. O]

Corollary 3. A friend of 10 must be the square of some number: n = 52*m?2.

Proof. Suppose 6(n) =9/5 and n = 5°m, m = p{'ps? ... p* then

50(5b)0(p§1)0(p§2) co(p) = (9)5bp?p§2 e
5145+ 450 +pr+..+p0) o (L pr+ ..+ 05) = (9)5p7ps? ... pP*

From the Even Corollary, we have p; > 2 for any ¢ < k. So the right side
must be odd. To obtain this, we must have that every sum on the left side
is also odd. Since each p? is odd, we must have an odd number of terms in
the sum for the whole sum to be odd. To obtain this, each e; and b must be
even. Thus n must be the square of some number. Il

Proposition 2. If 6(n) = 9/5, then 3t n.



Proof. From the even corollary, we have that if 6(n) = 9/5 and 3 | n, then
n = 3%5%m?2 23,51 m. It is easy to verify that (3*5?) and 5(325%) > 9/5.
Combining this with Lemma 1, we have that 6(3*5*m?), 6(3%5*m?) > 9/5.
Thus, the problem reduces to a single case: 6(325*m?) = 9/5.

50(3%)0(5%)a(m?) = 9(3%)(5%)m?
13(31)a(m?) = (3*)(5)m?

We can see that 13,31 | m?, thus m? = 13°31%? where 2, 3,5,13,31 t k. We
will divide by 13,31 immediately.

o (130 (31 (k?) = 3*(5)(13°71) (3197 1) k?
o(k?) 405 405
= < —<1
k2 o(13°) o(319) ~ 448
13¢-1 31d-1
N—— ——
>14 >32

This is a contradiction with property 2 for 6(k?). Hence, 3 f n whenever n is
a friend of 10. O

Proposition 3. lim;_, 6(p*) = p/(p — 1)
Proof.

Proposition 4. If 6(n) = 9/5, then n = 5%*p* ... pt™ where m > 4.

Proof. Using the previous proposition and properties 3 and 4, we will con-
struct the largest value of 6(n*) with 4 distinct primes. Let n = (5)(7)(11)(13).
Here is a largest value with four distinct primes because from proposition 2,
we have that p; > 7. To maximize the value of 6(n*) we let k — oo. Hence,

1001 9
lim 6(n*) = (5/4)(7/6)(11/10)(13/12) = — < =
lim 6(i¥) = (5/4)(7/6)(11/10)(13/12) = == < -
So there must be at least 5 distinct primes in the factorization of n. O
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The rest of the paper will be refinements in our representation of n, where
n is a friend of 10.

Proposition 5. If 6(n) = 9/5, then n = 52*pi* ... pi* where k > 5.

Proof. We can use the same technique as in the last proposition to show that
only 3 cases could work if n were represented as 5 distinct primes. These are
n = (5%7°11¢13%177)2, but this does not work because the smallest it could
be is: 6(527?11213%172) > 9/5. Case 2 gives n = (527°11°13919/)2, but this
does not work becuase the smallest it could be is: 6(527%11213219%) > 9/5.
The final case takes a little more work: n = (527°11¢13923/)2. We can see
that if @ > 1, then d(n) > 9/5, so a = 1. Let us examine when ¢(n) = 9/5,
then

50(5%)0 (7)o (11%)0(13*) 0 (23%7) = 9(5%)(7°11¢139237)?
310(5%) o (7)o (11%9) 0 (13*") 0 (23%) = 9(5%)(7°11°13%237)% = |

Clearly, 31 t . Since the left hand side is some integer, this results in a
contradiction. Hence a friend of 10 must be composed of at least 6 distinct
primes. [

Proposition 6. If 6(n) = 9/5, then n = 529p$* ... p>“** . p* where k > 5
and p; =1 mod 3 for some 1,1 <1i < k.

Proof. Suppose we had a friend 6(n) = 9/5, then the resulting equation
occurs for n = 52¢m?

50(5°*)a(m?) = 9(5*)m?
20(5°)o(m*) =0 mod 3

Let ¢ =1 mod 3, then o(¢%*™) =0 mod 3,0(¢%***) =2 mod 3,0(¢*) =
1 mod 3. Let ¢ = 2 mod 3, then o(¢3Y) =1 mod 3. Clearly for the abo-
ve stated equation to be true, we must have some p; = 1 mod 3 in the
factorization of m. Moreover, it must be of the form pi**2 O

4 .

Proposition 7. If 6(n) = 9/5, then n = 529p$* ... poit? .p?(%ﬁl) P
where k > 5 and p; =1 mod 3 for some i,1 <1 < k and either a = 2x or

dp;, 1 < j <k such that p; =1 mod 4.

Proof. The arguments are identical to those of the previous proposition, ex-
cept mod 4. Notice that an either/or condition results instead of a single
fact. O



Just for fun, we introduce a new definition.

Definition 1 (Theoretical Friend). A sequence ny is a theoretical friend
of m if: limy_.o 6(ng) = a(m).

Proposition 8. 10 has at least one theoretical friend, namely n; = 3*5.

Proof.

k
lim 6(n) = lim o(37) o(5)
k—o0 k—o0 3k7 5

Q-

For further reading on the topic of (n) and o(n), see [5] and [4]. See [5]
for information concerning when o(n) = k has exactly m solutions (Sierpinski
Conjecture). See [4] for a more indepth study of 6(n) and on the distribution
and density of numbers of this form.

]
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