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We examined the “Friendly Integer” problem first stated in [3]. A pair
(m, n) is called a friendly pair if σ(n)/n = σ(m)/m where σ(n) is the sum
of all the divisors of n. In this case, it is also common to say that m is a
friend of n, or simply that m and n are friends. For convience, we define
the function σ̂(n) = σ(n)/n. This is often called the abundacy or the index
of a number. Perfect numbers have abundancy 2, and thus are all friends.
Numbers with abundancy less than 2 are often called deficient, while numbers
whose abundancy are greater than 2 are called abundant [6]. The original
problem was to show that the density of friendly integers in N is unity, and
the density of solitary numbers (numbers with no friends) is zero. Also note,
that any variables will be positive integers unless stated otherwise. The two
letters p and q will represent prime integers throughout the paper.

We used two main approaches: one was an analysis of the σ̂(n) function,
while the other used number theoretic arguments to find a representation
for a friend of 10. In [3], it was shown that 10 is the smallest number where
it is unknown whether there are any friends of it. We will assume a basic
understanding of the function σ(n). This can be found in [2]. For more on
number theoretic techniques, see [1].

We discovered many useful properties of σ̂(n):

1. σ̂(nm) = σ̂(n)σ̂(m) if gcd(m, n) = 1

2. σ̂(n) > 1 for n > 1

3. For prime p, integers a > b, σ̂(pa) > σ̂(pb)

4. For primes p < q, σ̂(pa) > σ̂(qa)

1



Proof. 1. σ(n) is weakly multiplicative, therefore σ(nm)/nm = (σ(n)/n)(σ(m)/m) =
σ̂(n)σ̂(m) when gcd(m, n) = 1

2. This follows directly from σ(n) > n for n > 1

3. In [3], it was shown that σ̂(pa+1) > σ̂(pa), this is a natural generalization

4. Show that σ̂(pa) decreases for larger primes, suppose q > p:

σ̂(pa)− σ̂(qa) =
1 + p + p2 + . . . + pa

pa
− 1 + q + q2 + . . . + qa

qa

It is enough to show that

qa(1 + p + p2 + . . . + pa)− pa(1 + q + q2 + . . . + qa) < 0

Regroup the terms

(qa − pa) + (qap− paq) + (qap2 − paq2) + . . . + (qapa − paqa)

= (qa − pa)︸ ︷︷ ︸
<0

+qp (qa−1 − pa−1)︸ ︷︷ ︸
<0

+q2p2 (qa−2 − pa−2)︸ ︷︷ ︸
<0

+ . . . + qapa (1− 1)︸ ︷︷ ︸
=0

< 0

Some of these properties can be generalized further, but these will be our
building blocks to prove bigger results.

Proposition 1. σ̂(n) < σ̂(an) for a > 1

Proof. In general, a can share prime factors with n. Let a = lm where
gcd(a, n) = l, gcd(m, n) = 1. We thus have σ̂(an) = σ̂(ln)σ̂(m) by property
1. Property 2 gives

σ̂(an) = σ̂(ln)σ̂(m) > σ̂(ln)

Now property 3 gives us

σ̂(ln) > σ̂(n)

Thus

σ̂(an) > σ̂(n)
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Corollary 1. When a = nb we get a generalization of property 3: σ̂(nj) <
σ̂(nk) for j < k.

Note that property 4 is not true for general x > y.
Using these tools, we analyzed whether 10 has a friend and what forms

that friend can and cannot take. Notice that σ̂(10) = 9/5. We can easily
deduce that a friend of 10 must be of the form n = 5am otherwise σ̂(n) could
not reduce to the fraction 9/5.

Lemma 1. A friend of m cannot be a multple of m. That is σ̂(m) 6= σ̂(am)
for a > 1.

Proof. This follows directly from Propostion 1. Since am is a multiple of m,
σ̂(am) > σ̂(m), so σ̂(am) 6= σ̂(m).

Corollary 2 (Even Corollary). A friend of 10 cannot be of the form n =
2a5bm. Thus a friend of 10 cannot be an even integer.

Proof. For a, b > 1, 2a5b is a multiple of 10, and thus so is n = 2a5bm.
Therefore n is not a friend of 10. A friend of 10 must be of the form 5bm, so
a friend of 10 cannot be an even integer.

Corollary 3. A friend of 10 must be the square of some number: n = 52bm2.

Proof. Suppose σ̂(n) = 9/5 and n = 5bm, m = pe1
1 pe2

2 . . . pek
k then

σ(n)

n
=

9

5
5σ(5b)σ(pe1

1 )σ(pe2
2 ) . . . σ(pek

k ) = (9)5bpe1
1 pe2

2 . . . pek
k

5(1 + 5 + . . . + 5b)(1 + p1 + . . . + pe1
1 ) . . . (1 + pk + . . . + pek

k ) = (9)5bpe1
1 pe2

2 . . . pek
k

From the Even Corollary, we have pi > 2 for any i ≤ k. So the right side
must be odd. To obtain this, we must have that every sum on the left side
is also odd. Since each px

i is odd, we must have an odd number of terms in
the sum for the whole sum to be odd. To obtain this, each ei and b must be
even. Thus n must be the square of some number.

Proposition 2. If σ̂(n) = 9/5, then 3 - n.
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Proof. From the even corollary, we have that if σ̂(n) = 9/5 and 3 | n, then
n = 32a52bm2, 2, 3, 5 - m. It is easy to verify that σ̂(3452) and σ̂(3254) > 9/5.
Combining this with Lemma 1, we have that σ̂(3452m2), σ̂(3254m2) > 9/5.
Thus, the problem reduces to a single case: σ̂(3252m2) = 9/5.

5σ(32)σ(52)σ(m2) = 9(32)(52)m2

13(31)σ(m2) = (34)(5)m2

We can see that 13, 31 | m2, thus m2 = 13c31dk2 where 2, 3, 5, 13, 31 - k. We
will divide by 13,31 immediately.

σ(13c)σ(31d)σ(k2) = 34(5)(13c−1)(31d−1)k2

σ(k2)

k2
=

405

σ(13c)

13c−1︸ ︷︷ ︸
≥14

σ(31d)

31d−1︸ ︷︷ ︸
≥32

<
405

448
< 1

This is a contradiction with property 2 for σ̂(k2). Hence, 3 - n whenever n is
a friend of 10.

Proposition 3. limk→∞ σ̂(pk) = p/(p− 1)

Proof.

lim
k→∞

σ(pk)

pk
= lim

k→∞

pk+1 − 1

pk(p− 1)

= lim
k→∞

p− 1/pk

p− 1
=

p

p− 1

Proposition 4. If σ̂(n) = 9/5, then n = 52ape1
1 . . . pem

m where m ≥ 4.

Proof. Using the previous proposition and properties 3 and 4, we will con-
struct the largest value of σ̂(nk) with 4 distinct primes. Let n = (5)(7)(11)(13).
Here is a largest value with four distinct primes because from proposition 2,
we have that pi ≥ 7. To maximize the value of σ̂(nk) we let k →∞. Hence,

lim
k→∞

σ̂(nk) = (5/4)(7/6)(11/10)(13/12) =
1001

576
<

9

5

So there must be at least 5 distinct primes in the factorization of n.
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The rest of the paper will be refinements in our representation of n, where
n is a friend of 10.

Proposition 5. If σ̂(n) = 9/5, then n = 52ape1
1 . . . pek

k where k ≥ 5.

Proof. We can use the same technique as in the last proposition to show that
only 3 cases could work if n were represented as 5 distinct primes. These are
n = (5a7b11c13d17f )2, but this does not work because the smallest it could
be is: σ̂(5272112132172) > 9/5. Case 2 gives n = (5a7b11c13d19f )2, but this
does not work becuase the smallest it could be is: σ̂(5272112132192) > 9/5.
The final case takes a little more work: n = (5a7b11c13d23f )2. We can see
that if a > 1, then σ̂(n) > 9/5, so a = 1. Let us examine when σ̂(n) = 9/5,
then

5σ(52)σ(72b)σ(112c)σ(132d)σ(232f ) = 9(52)(7b11c13d23f )2

31σ(52)σ(72b)σ(112c)σ(132d)σ(232f ) = 9(52)(7b11c13d23f )2 = l

Clearly, 31 - l. Since the left hand side is some integer, this results in a
contradiction. Hence a friend of 10 must be composed of at least 6 distinct
primes.

Proposition 6. If σ̂(n) = 9/5, then n = 52ape1
1 . . . p6ei+2

i . . . pek
k where k ≥ 5

and pi ≡ 1 mod 3 for some i, 1 ≤ i ≤ k.

Proof. Suppose we had a friend σ̂(n) = 9/5, then the resulting equation
occurs for n = 52am2

5σ(52a)σ(m2) = 9(52a)m2

2σ(52a)σ(m2) ≡ 0 mod 3

Let q1 ≡ 1 mod 3, then σ(q6x+2
1 ) ≡ 0 mod 3, σ(q6x+4

1 ) ≡ 2 mod 3, σ(q6x
1 ) ≡

1 mod 3 . Let q2 ≡ 2 mod 3, then σ(q2y
2 ) ≡ 1 mod 3. Clearly for the abo-

ve stated equation to be true, we must have some pi ≡ 1 mod 3 in the
factorization of m. Moreover, it must be of the form p6x+2

i .

Proposition 7. If σ̂(n) = 9/5, then n = 52ape1
1 . . . p6ei+2

i . . . p
2(2ej+1)
j . . . pek

k

where k ≥ 5 and pi ≡ 1 mod 3 for some i, 1 ≤ i ≤ k and either a = 2x or
∃pj, 1 ≤ j ≤ k such that pj ≡ 1 mod 4.

Proof. The arguments are identical to those of the previous proposition, ex-
cept mod 4. Notice that an either/or condition results instead of a single
fact.
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Just for fun, we introduce a new definition.

Definition 1 (Theoretical Friend). A sequence nk is a theoretical friend
of m if: limk→∞ σ̂(nk) = σ̂(m).

Proposition 8. 10 has at least one theoretical friend, namely nk = 3k5.

Proof.

lim
k→∞

σ̂(n) = lim
k→∞

σ(3k)

3k

σ(5)

5

=

(
3

2

) (
6

5

)
=

9

5
= σ̂(10)

For further reading on the topic of σ̂(n) and σ(n), see [5] and [4]. See [5]
for information concerning when σ(n) = k has exactly m solutions (Sierpiński
Conjecture). See [4] for a more indepth study of σ̂(n) and on the distribution
and density of numbers of this form.
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