The Loneliest Number

Mary Drennen, Tracey Gunter, Peter Johnson, Jeffrey Ward
07/08/06

We examined the "Friendly Integer" problem first stated in 3. A pair (m, n) is called a friendly pair if $\sigma(n) / n=\sigma(m) / m$ where $\sigma(n)$ is the sum of all the divisors of n. In this case, it is also common to say that m is a friend of n, or simply that m and n are friends. For convience, we define the function $\hat{\sigma}(n)=\sigma(n) / n$. This is often called the abundacy or the index of a number. Perfect numbers have abundancy 2, and thus are all friends. Numbers with abundancy less than 2 are often called deficient, while numbers whose abundancy are greater than 2 are called abundant [6]. The original problem was to show that the density of friendly integers in \mathbb{N} is unity, and the density of solitary numbers (numbers with no friends) is zero. Also note, that any variables will be positive integers unless stated otherwise. The two letters p and q will represent prime integers throughout the paper.

We used two main approaches: one was an analysis of the $\hat{\sigma}(n)$ function, while the other used number theoretic arguments to find a representation for a friend of 10 . In [3], it was shown that 10 is the smallest number where it is unknown whether there are any friends of it. We will assume a basic understanding of the function $\sigma(n)$. This can be found in [2]. For more on number theoretic techniques, see [1].

We discovered many useful properties of $\hat{\sigma}(n)$:

1. $\hat{\sigma}(n m)=\hat{\sigma}(n) \hat{\sigma}(m)$ if $\operatorname{gcd}(m, n)=1$
2. $\hat{\sigma}(n)>1$ for $n>1$
3. For prime p, integers $a>b, \hat{\sigma}\left(p^{a}\right)>\hat{\sigma}\left(p^{b}\right)$
4. For primes $p<q, \hat{\sigma}\left(p^{a}\right)>\hat{\sigma}\left(q^{a}\right)$

Proof. 1. $\sigma(n)$ is weakly multiplicative, therefore $\sigma(n m) / n m=(\sigma(n) / n)(\sigma(m) / m)=$ $\hat{\sigma}(n) \hat{\sigma}(m)$ when $\operatorname{gcd}(m, n)=1$
2. This follows directly from $\sigma(n)>n$ for $n>1$
3. In [3], it was shown that $\hat{\sigma}\left(p^{a+1}\right)>\hat{\sigma}\left(p^{a}\right)$, this is a natural generalization
4. Show that $\hat{\sigma}\left(p^{a}\right)$ decreases for larger primes, suppose $q>p$:

$$
\hat{\sigma}\left(p^{a}\right)-\hat{\sigma}\left(q^{a}\right)=\frac{1+p+p^{2}+\ldots+p^{a}}{p^{a}}-\frac{1+q+q^{2}+\ldots+q^{a}}{q^{a}}
$$

It is enough to show that

$$
q^{a}\left(1+p+p^{2}+\ldots+p^{a}\right)-p^{a}\left(1+q+q^{2}+\ldots+q^{a}\right)<0
$$

Regroup the terms

$$
\begin{array}{r}
\left(q^{a}-p^{a}\right)+\left(q^{a} p-p^{a} q\right)+\left(q^{a} p^{2}-p^{a} q^{2}\right)+\ldots+\left(q^{a} p^{a}-p^{a} q^{a}\right) \\
=\underbrace{\left(q^{a}-p^{a}\right)}_{<0}+q p \underbrace{\left(q^{a-1}-p^{a-1}\right)}_{<0}+q^{2} p^{2} \underbrace{\left(q^{a-2}-p^{a-2}\right)}_{<0}+\ldots+q^{a} p^{a} \underbrace{(1-1)}_{=0}<0
\end{array}
$$

Some of these properties can be generalized further, but these will be our building blocks to prove bigger results.

Proposition 1. $\hat{\sigma}(n)<\hat{\sigma}(a n)$ for $a>1$
Proof. In general, a can share prime factors with n. Let $a=l m$ where $\operatorname{gcd}(a, n)=l, \operatorname{gcd}(m, n)=1$. We thus have $\hat{\sigma}(a n)=\hat{\sigma}(l n) \hat{\sigma}(m)$ by property 1. Property 2 gives

$$
\hat{\sigma}(a n)=\hat{\sigma}(l n) \hat{\sigma}(m)>\hat{\sigma}(l n)
$$

Now property 3 gives us

$$
\hat{\sigma}(l n)>\hat{\sigma}(n)
$$

Thus

$$
\hat{\sigma}(a n)>\hat{\sigma}(n)
$$

Corollary 1. When $a=n^{b}$ we get a generalization of property 3: $\hat{\sigma}\left(n^{j}\right)<$ $\hat{\sigma}\left(n^{k}\right)$ for $j<k$.

Note that property 4 is not true for general $x>y$.
Using these tools, we analyzed whether 10 has a friend and what forms that friend can and cannot take. Notice that $\hat{\sigma}(10)=9 / 5$. We can easily deduce that a friend of 10 must be of the form $n=5^{a} m$ otherwise $\hat{\sigma}(n)$ could not reduce to the fraction $9 / 5$.

Lemma 1. A friend of m cannot be a multple of m. That is $\hat{\sigma}(m) \neq \hat{\sigma}(a m)$ for $a>1$.

Proof. This follows directly from Propostion 1. Since $a m$ is a multiple of m, $\hat{\sigma}(a m)>\hat{\sigma}(m)$, so $\hat{\sigma}(a m) \neq \hat{\sigma}(m)$.

Corollary 2 (Even Corollary). A friend of 10 cannot be of the form $n=$ $2^{a} 5^{b} \mathrm{~m}$. Thus a friend of 10 cannot be an even integer.

Proof. For $a, b>1,2^{a} 5^{b}$ is a multiple of 10 , and thus so is $n=2^{a} 5^{b} m$. Therefore n is not a friend of 10 . A friend of 10 must be of the form $5^{b} m$, so a friend of 10 cannot be an even integer.

Corollary 3. A friend of 10 must be the square of some number: $n=5^{2 b} m^{2}$.
Proof. Suppose $\hat{\sigma}(n)=9 / 5$ and $n=5^{b} m, m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$ then

$$
\begin{gathered}
\frac{\sigma(n)}{n}=\frac{9}{5} \\
5 \sigma\left(5^{b}\right) \sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \ldots \sigma\left(p_{k}^{e_{k}}\right)=(9) 5^{b} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \\
5\left(1+5+\ldots+5^{b}\right)\left(1+p_{1}+\ldots+p_{1}^{e_{1}}\right) \ldots\left(1+p_{k}+\ldots+p_{k}^{e_{k}}\right)=(9) 5^{b} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}
\end{gathered}
$$

From the Even Corollary, we have $p_{i}>2$ for any $i \leq k$. So the right side must be odd. To obtain this, we must have that every sum on the left side is also odd. Since each p_{i}^{x} is odd, we must have an odd number of terms in the sum for the whole sum to be odd. To obtain this, each e_{i} and b must be even. Thus n must be the square of some number.

Proposition 2. If $\hat{\sigma}(n)=9 / 5$, then $3 \nmid n$.

Proof. From the even corollary, we have that if $\hat{\sigma}(n)=9 / 5$ and $3 \mid n$, then $n=3^{2 a} 5^{2 b} m^{2}, 2,3,5 \nmid m$. It is easy to verify that $\hat{\sigma}\left(3^{4} 5^{2}\right)$ and $\hat{\sigma}\left(3^{2} 5^{4}\right)>9 / 5$. Combining this with Lemma 1, we have that $\hat{\sigma}\left(3^{4} 5^{2} m^{2}\right), \hat{\sigma}\left(3^{2} 5^{4} m^{2}\right)>9 / 5$. Thus, the problem reduces to a single case: $\hat{\sigma}\left(3^{2} 5^{2} m^{2}\right)=9 / 5$.

$$
\begin{array}{r}
5 \sigma\left(3^{2}\right) \sigma\left(5^{2}\right) \sigma\left(m^{2}\right)=9\left(3^{2}\right)\left(5^{2}\right) m^{2} \\
13(31) \sigma\left(m^{2}\right)=\left(3^{4}\right)(5) m^{2}
\end{array}
$$

We can see that $13,31 \mid m^{2}$, thus $m^{2}=13^{c} 31^{d} k^{2}$ where $2,3,5,13,31 \nmid k$. We will divide by 13,31 immediately.

$$
\begin{array}{r}
\sigma\left(13^{c}\right) \sigma\left(31^{d}\right) \sigma\left(k^{2}\right)=3^{4}(5)\left(13^{c-1}\right)\left(31^{d-1}\right) k^{2} \\
\frac{\sigma\left(k^{2}\right)}{k^{2}}=\frac{405}{\underbrace{\frac{\sigma\left(13^{c}\right)}{13^{c-1}}}_{\geq 14} \underbrace{\frac{\sigma\left(31^{d}\right)}{31^{d-1}}}_{\geq 32}}<\frac{405}{448}<1
\end{array}
$$

This is a contradiction with property 2 for $\hat{\sigma}\left(k^{2}\right)$. Hence, $3 \nmid n$ whenever n is a friend of 10 .

Proposition 3. $\lim _{k \rightarrow \infty} \hat{\sigma}\left(p^{k}\right)=p /(p-1)$
Proof.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{\sigma\left(p^{k}\right)}{p^{k}}=\lim _{k \rightarrow \infty} \frac{p^{k+1}-1}{p^{k}(p-1)} \\
& \quad=\lim _{k \rightarrow \infty} \frac{p-1 / p^{k}}{p-1}=\frac{p}{p-1}
\end{aligned}
$$

Proposition 4. If $\hat{\sigma}(n)=9 / 5$, then $n=5^{2 a} p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}$ where $m \geq 4$.
Proof. Using the previous proposition and properties 3 and 4, we will construct the largest value of $\hat{\sigma}\left(n^{k}\right)$ with 4 distinct primes. Let $n=(5)(7)(11)(13)$. Here is a largest value with four distinct primes because from proposition 2, we have that $p_{i} \geq 7$. To maximize the value of $\hat{\sigma}\left(n^{k}\right)$ we let $k \rightarrow \infty$. Hence,

$$
\lim _{k \rightarrow \infty} \hat{\sigma}\left(n^{k}\right)=(5 / 4)(7 / 6)(11 / 10)(13 / 12)=\frac{1001}{576}<\frac{9}{5}
$$

So there must be at least 5 distinct primes in the factorization of n.

The rest of the paper will be refinements in our representation of n, where n is a friend of 10 .

Proposition 5. If $\hat{\sigma}(n)=9 / 5$, then $n=5^{2 a} p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ where $k \geq 5$.
Proof. We can use the same technique as in the last proposition to show that only 3 cases could work if n were represented as 5 distinct primes. These are $n=\left(5^{a} 7^{b} 11^{c} 13^{d} 17^{f}\right)^{2}$, but this does not work because the smallest it could be is: $\hat{\sigma}\left(5^{2} 7^{2} 11^{2} 13^{2} 17^{2}\right)>9 / 5$. Case 2 gives $n=\left(5^{a} 7^{b} 11^{c} 13^{d} 19^{f}\right)^{2}$, but this does not work becuase the smallest it could be is: $\hat{\sigma}\left(5^{2} 7^{2} 11^{2} 13^{2} 19^{2}\right)>9 / 5$. The final case takes a little more work: $n=\left(5^{a} 7^{b} 11^{c} 13^{d} 23^{f}\right)^{2}$. We can see that if $a>1$, then $\hat{\sigma}(n)>9 / 5$, so $a=1$. Let us examine when $\hat{\sigma}(n)=9 / 5$, then

$$
\begin{array}{r}
5 \sigma\left(5^{2}\right) \sigma\left(7^{2 b}\right) \sigma\left(11^{2 c}\right) \sigma\left(13^{2 d}\right) \sigma\left(23^{2 f}\right)=9\left(5^{2}\right)\left(7^{b} 11^{c} 13^{d} 23^{f}\right)^{2} \\
31 \sigma\left(5^{2}\right) \sigma\left(7^{2 b}\right) \sigma\left(11^{2 c}\right) \sigma\left(13^{2 d}\right) \sigma\left(23^{2 f}\right)=9\left(5^{2}\right)\left(7^{b} 11^{c} 13^{d} 23^{f}\right)^{2}=l
\end{array}
$$

Clearly, $31 \nmid l$. Since the left hand side is some integer, this results in a contradiction. Hence a friend of 10 must be composed of at least 6 distinct primes.

Proposition 6. If $\hat{\sigma}(n)=9 / 5$, then $n=5^{2 a} p_{1}^{e_{1}} \ldots p_{i}^{6 e_{i}+2} \ldots p_{k}^{e_{k}}$ where $k \geq 5$ and $p_{i} \equiv 1 \bmod 3$ for some $i, 1 \leq i \leq k$.
Proof. Suppose we had a friend $\hat{\sigma}(n)=9 / 5$, then the resulting equation occurs for $n=5^{2 a} m^{2}$

$$
\begin{gathered}
5 \sigma\left(5^{2 a}\right) \sigma\left(m^{2}\right)=9\left(5^{2 a}\right) m^{2} \\
2 \sigma\left(5^{2 a}\right) \sigma\left(m^{2}\right) \equiv 0 \quad \bmod 3
\end{gathered}
$$

Let $q_{1} \equiv 1 \bmod 3$, then $\sigma\left(q_{1}^{6 x+2}\right) \equiv 0 \bmod 3, \sigma\left(q_{1}^{6 x+4}\right) \equiv 2 \bmod 3, \sigma\left(q_{1}^{6 x}\right) \equiv$ $1 \bmod 3$. Let $q_{2} \equiv 2 \bmod 3$, then $\sigma\left(q_{2}^{2 y}\right) \equiv 1 \bmod 3$. Clearly for the above stated equation to be true, we must have some $p_{i} \equiv 1 \bmod 3$ in the factorization of m. Moreover, it must be of the form $p_{i}^{6 x+2}$.

Proposition 7. If $\hat{\sigma}(n)=9 / 5$, then $n=5^{2 a} p_{1}^{e_{1}} \ldots p_{i}^{6 e_{i}+2} \ldots p_{j}^{2\left(2 e_{j}+1\right)} \ldots p_{k}^{e_{k}}$ where $k \geq 5$ and $p_{i} \equiv 1 \bmod 3$ for some $i, 1 \leq i \leq k$ and either $a=2 x$ or $\exists p_{j}, 1 \leq j \leq k$ such that $p_{j} \equiv 1 \bmod 4$.

Proof. The arguments are identical to those of the previous proposition, except mod 4. Notice that an either/or condition results instead of a single fact.

Just for fun, we introduce a new definition.
Definition 1 (Theoretical Friend). A sequence n_{k} is a theoretical friend of m if: $\lim _{k \rightarrow \infty} \hat{\sigma}\left(n_{k}\right)=\hat{\sigma}(m)$.

Proposition 8. 10 has at least one theoretical friend, namely $n_{k}=3^{k} 5$.
Proof.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \hat{\sigma}(n)=\lim _{k \rightarrow \infty} \frac{\sigma\left(3^{k}\right)}{3^{k}} \frac{\sigma(5)}{5} \\
& =\left(\frac{3}{2}\right)\left(\frac{6}{5}\right)=\frac{9}{5}=\hat{\sigma}(10)
\end{aligned}
$$

For further reading on the topic of $\hat{\sigma}(n)$ and $\sigma(n)$, see [5] and [4]. See [5] for information concerning when $\sigma(n)=k$ has exactly m solutions (Sierpiński Conjecture). See [4] for a more indepth study of $\hat{\sigma}(n)$ and on the distribution and density of numbers of this form.

Literatur

[1] Introduction to Analytic Number Theory. Springer-Verlag, 1968.
[2] Number Theory, chapter 6. Dover Publications, 1971.
[3] C.W. Anderson and Dean Hickerson. Friendly integers. American Mathematical Monthly, 1977.
[4] P. Erdos. On the distribution of numbers of the form $\sigma(n) / n$ and on some related questions. Pacific J. Math., 1974.
[5] Sergei Konyagin Kevin Ford. On two conjectures of sierpinski concerning the arithmetic functions σ and ϕ. http://www.math.uiuc.edu/ ford/wwwpapers/sigma.pdf.
[6] Eric W. Weisstein. Abundance. In Mathworld - A Wolfram Web Resour$c e$.

