
CS452/552; EE465/505  

Shadow Mapping

4-07–15

! Shadow Mapping

Read:
✦ Angel, Chapter 5:
• 5.10 Projections and Shadows
• 5.11 Shadow Maps

✦WebGL Programming Guide: Chapter 10
✦WebGL Academy: www.webglacademy.com,
✦ Learning WebGL: learningwebgl.com lesson 16, render-to-texture

Project#2 posted due: April 23rd

Outline

http://www.webglacademy.com
http://learningwebgl.com

! Shadows increase scene realism
■ real world has shadows
■ good for depth perception
■ good for immersive games
● dramatic effects
● spooky effects

■ Other art forms use shadows
effectively

Shadows

source: fractalenlightenment.com

source: warmphotos.net

http://fractalenlightenment.com
http://warmphotos.net

Examples: WebGL Programming Guide, Chapter 10
Shadow.html Shadow_highp.html

shadow of red triangle cast
onto slanted white rectangle

same, but uses more
precision (fragment
shader changed)

Shadow_highp_sphere.html

Examples: WebGL Programming Guide, Chapter 10

high precision shadow of red
triangle cast onto sphere

!When do we not see shadows in a real scene?
!When the only light source is a point source at
the eye or center of projection

✦Shadows are behind objects and not visible
! Shadows are a global rendering issue

✦ Is a surface visible from a source
✦May be obscured by other objects

Flashlight in the Eye Graphics

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! Note that shadows are generated automatically
by a ray tracers

✦ feeler rays will detect if no light reaches a point
✦need all objects to be available

! Pipeline renderers work an object at a time so
shadows are not automatic

✦ can use some tricks: projective shadows
✦multi-rendering: shadow maps and shadow
volumes

Shadows in Pipeline Renders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! Oldest methods
✦Used in flight simulators to provide visual clues

! Projection of a polygon is a polygon called a
shadow polygon

! Given a point light source and a polygon, the
vertices of the shadow polygon are the
projections of the original polygon’s vertices
from a point source onto a surface

Projective Shadows

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Polygon

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1. Source at (xl, yl, zl)

2. Vertex at (x, y, z)
3. Consider simple case of shadow projected

onto ground at (xp, 0, zp)

4. Translate source to origin with T(-xl, -yl, -zl)

5. Perspective projection

6. Translate back

Computing Shadow Vertex

€

M =

1 0 0 0
0 1 0 0
0 0 1 0
0 1

−
l
y 0 0

$

%
%
%
%
%

&

'

(
(
(
(
(

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1. Put two identical triangles and their colors on
GPU (black for shadow triangle)

2. Compute two model view matrices as uniforms
3. Send model view matrix for original triangle
4. Render original triangle
5. Send second model view matrix
6. Render shadow triangle

✦Note shadow triangle undergoes two transformations
✦Note hidden surface removal takes care of depth issues

Shadow Process

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! Approach was OK for shadows on a single flat
surface

! Note with geometry shader we can have the
shader create the second triangle

! Cannot handle shadows on general objects
! Exist a variety of other methods based on same
basic idea

!We’ll pursue methods based on projective
textures

Generalized Shadows

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

!We can project a texture onto the surface in
which case we are treating the texture as a
“slide projector”

! This technique the basis of projective textures
and image based lighting

! Supported in desktop OpenGL and GLSL through
four dimensional texture coordinates

!Not yet in WebGL

Image Based Lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! If we render a scene from a light source, the
depth buffer will contain the distances from the
source to nearest lit fragment.

!We can store these depths in a texture called a
depth map or shadow map

! Note that although we don’t care about the
image in the shadow map, if we render with
some light, anything lit is not in shadow.

! Form a shadow map for each source

Shadow Maps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! During the final rendering we compare the
distance from the fragment to the light source
with the distance in the shadow map

! If the depth in the shadow map is less than the
distance from the fragment to the source the
fragment is in shadow (from this source)

!Otherwise we use the rendered color

Final Rendering

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

! Requires multiple renderings
! Recall render-to-texture

✦gives us a method to save the results of a
rendering as a texture

✦almost all work done in the shaders

Implementation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shadow Volumes
light source

COP

near clipping plane

far clipping plane

shadow volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Common Real-time Shadow Techniques

source: Mark Killgard, NVIDIA, GDC, 2001

Algorithm Pros Cons

baked
shadowlight maps

best visual quality • not dynamic
• memory cost of

textures

projected texture
shadows

dynamic, easy to soften • many visual artifacts
• tricky to set up
• extra rendering pass

volumetric
shadows

dynamic, high quality • computational
expense

• hard to set up
• sharp edges

Projecting Shadows

! Projected planar shadows
■ works well only on flat surfaces

! Stenciled shadow volumes
■ determining the shadow volume

! Light maps
■ unsuitable for dynamic shadows

In general, hard to get everything shadowed well

Problems with Common Shadow
Techniques

! Image-space shadow determined
■ Lance Williams published the basic idea in 1978
● (also the year that Jim Blinn invented bump mapping)

■ Image-space algorithm
● means no knowledge of the scene’s geometry is
required

● must deal with aliasing artifacts
■ Well known software rendering technique
● Pixar’s RenderMan uses the technique
● Basic shadowing technique for Toy Story, etc.

Another technique: Shadow Mapping

! Basic Idea:
■ the pixels “seen” by the light are lit
■ all other pixels are in shadow

Shadow Mapping Concept

! Two pass algorithm:
■ 1st pass: render the scene from the light’s point of
view and “remember” which pixels the light has seen
● the result is a “shadow map”
● essentially a 2D function indicating the depth of the
closest pixels to the light

■ 2nd pass: render the scene as the camera sees it
● if we “remembered” that pixel
o gl_FragColor = ambient+diffuse+specular

● else
o gl_FragColor = ambient

Shadow Mapping Concept

! How do we “remember” which pixels are seen
from the light’s point of view?

! Render the screen to the depth texture with
GL_DEPTH_TEST enabled
■ OpenGL/WebGL allows you to create a framebuffer
and render to it

Shadow Mapping Concept

! Depth testing from the light’s point-of-view
■ Two pass algorithm
■ First, render the depth buffer from the light’s
point-of-view
● the result is a “shadow map”
● essentially a 2D function indicating the depth of the
closest pixels to the light

■ This shadow map is used in the second pass

Shadow Mapping Concept

! Shadow determination with the depth map
■ Second, render scene from the eye’s point-of-view
■ For each rasterized fragment
● determine fragment’s XYZ position relative to the light
● this light position should be set up to match the
frustum used to create the depth map

● compare the depth value at light position XY in the
shadow map to the fragment’s light position Z

Shadow Mapping Concept

! The Shadow Map Comparison
■ Two values
● A = Z value from the depth map at fragment’s light
XY position

● B = Z value of the fragment’s XYZ light position
■ If B is greater than A, then there must be
something closer to the light than the fragment
● so the fragment is shadowed

■ If A and B are approximately equal, the fragment
is lit

Shadow Mapping Concept

2D Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

2D Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

2D Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

! Assume:
■ one light: multiple lights require multiple depthmaps
■ directional light: spotlights require more processing
■ the light is stationary: dynamic shadows are complex

Simple shadow mapping

Using Depth

Example Scene

Shadow
Map

! Typically more than twice as fast as a normal
render, because only low precision depth is written,
instead of both the depth and the color

! Memory bandwidth is the biggest performance issue

1st Pass: Rendering a Shadow Map

! Example:
■ dark color means a small z
■ so, the upper right corner of
the wall is near the camera

■ at the opposite, white means
z=1 (in homogeneous
coordinates), so this is very far

! For each fragment that we compute, we must test whether it is
“behind” the shadow map or not.

! To do this, must compute the current fragment’s position in the same
space as the one we used when creating the shadowmap S. So, we
need to transform it once with the usual MVP matrix, and another time
with the depthMVP matrix.

! However, multiplying the vertex’ position by depthMVP will give
homogeneous coordinates, which are in [-1,1]; but texture sampling
must be done in [0,1]

2nd Pass: Using the Shadow Map

■ For example, a fragment in the
middle of the screen will be in
(0,0) in homogeneous
coordinates; but since it will
have to sample the middle of
the texture, the UVs will have to
be (0.5,0.5)

NDC

TEX

(-1,-1)NDC

(0,0)NDC

(1,1)

! Can be fixed by tweaking in the fragment shader
! More efficient, though, to multiply the homogeneous

coordinates by the following matrix
■ divides coordinates by 2 (the diagonal: [-1,1] -> [-0.5,0.5]
■ and translates them (lower row: [-0.5,0.5] -> [0,1])

glm::mat4 biasMatrix(
 0.5, 0.0, 0.0, 0.0,
 0.0, 0.5, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.0,
 0.5, 0.5, 0.5, 1.0
);
glm::mat4 depthBiasMVP = biasMatrix*depthMVP;

2nd Pass: Using the Shadow Map

! gl_Position is the position of the vertex as seen from the current camera
! ShadowCoord is the position of the vertex as seen from the light

2nd Pass: Vertex Shader

// Output position of the vertex, in clip space : MVP * position
gl_Position = MVP * vec4(vertexPosition_modelspace,1);

// Same, but with the light's view matrix
ShadowCoord = DepthBiasMVP * vec4(vertexPosition_modelspace,1)

! texture(shadowMap, ShadowCoord.xy).z is the distance between the light and
the nearest occluder

! ShadowCoord.z is the distance between the light and the current fragment
■ so, if the current fragment is further than the nearest occluder, this means we
are in the shadow (of that nearest occluder)

■ Use this to modify the shading

2nd Pass: Fragment Shader

float visibility = 1.0;
if (texture(shadowMap, ShadowCoord.xy).z < ShadowCoord.z){
 visibility = 0.5;
}

color =
 // Ambient : simulates indirect lighting
 MaterialAmbientColor +
 // Diffuse : "color" of the object
 visibility * MaterialDiffuseColor * LightColor * LightPower * cosTheta+
 // Specular : reflective highlight, like a mirror
 visibility * MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5);

Result: Shadow Acne!

! Known as “shadow acne”

! Consider the following:

Problems:

! The usual “fix” is to add an error margin
■ we only shade if the current fragment’s depth (in
light space) is really far away from the lightmap
value

■ that is, add a “bias”

Fixing Shadow Acne

float bias = 0.005;
float visibility = 1.0;
if (texture2D(shadowMap, ShadowCoord.xy).z <
 ShadowCoord.z-bias){
 visibility = 0.5;
}

Result: using a Bias

! Another problem: artifact between the ground and the wall is worse;
also a bias of 0.005 seems too much on the ground, but not
enough on the surface (some artifacts on the cylinder & sphere)

! Common approach: modify the bias according to the slope

Tweaking the Bias
float bias = 0.005*tan(acos(cosTheta)); // cosTheta is dot(n,l), clamped between 0 + 1
bias = clamp(bias, 0,0.01);

! No more shadow
acne!

! Render only the back faces in the shadow map
! Only works with some geometries, with thick walls, but at least the acne

will be on surfaces in the shadow

■ When rendering the shadow map, cull front-facing triangles:

■ When rendering the scene, render normally (backface culling)

Another trick

// We don't use bias in the shader, but instead we draw back faces,
// which are already separated from the front faces by a small distance
// (if your geometry is made this way). In OpenGL this is done as follows:
glCullFace(GL_FRONT); // Cull front-facing triangles ; draw only back-facing ones

glCullFace(GL_BACK); // Cull back-facing triangles -> draw only front-facing ones

! Shadow acne is gone, but some shadows are detached
from the object; this is called “Peter Panning”

Peter Panning

from Walt Disney’s Peter Pan, 1953

! One way to minimize both shadow acne and
peter panning is to use linear depth.
✦That is, instead of using the projected !-coordinate,
we instead calculate the distance between the
vertex and the light source in view space

✦Still need to map the result between 0.0 and 1.0
✦Combined with filtering algorithms, gives good
results
● VSM: Variance Shadow Maps
● ESM: Exponential Shadow Maps

Peter Panning: correction

! Another approach: avoid thin geometry
✦Solves Peter Panning: if the geometry is more deep
than your bias, you’re all set

✦You can turn on backface culling when rendering the
lightmap, because now there is a polygon of the wall
which is facing the light, which will occlude the other
side, which wouldn’t be rendered with backface culling

! Drawback: more triangles to render (two times
per frame!)

Peter Panning: correction

Peter Panning Example
With Peter Panning: Without Peter Panning:

! Notice that there is still aliasing on the border of the
shadow.
✦one pixel is white, the next is black, without a smooth
transition inbetween

✦easy solution: change the shadowmap’s sampler type to
sampler2DShadow

✦can also add Poisson Sampling

Aliasing

! Early bailing
✦ instead of taking 16 samples for each fragment, take 4
distant samples.
● if either all 4 are in the light, or in the shadow,
assume the other 12 also are

● if not all 4 are in the light (or shadow), process
more

Improvements

! Spot lights
✦easy to add: change the orthographic projection matrix
into a perspective one

✦also, take into account the perspective in the shader

Improvements

! Point lights
✦similar to spot light, but with depth cubemaps
✦ a cubemap is a set of 6 textures
● it is not accessed with standard UV coordinates, but with a 3D

vector representing a direction
✦ the depth is stored for all directions in space, which makes

it possible for shadows to be cast around the point light

Improvements

! Combination of several lights
✦each light requires an additional rendering of the
scene in order to produce the shadowmap
● requires a lot of memory

Improvements

! Automatic light frustum
✦ the light frustum used here was hand-crafted to contain
the whole scene
● better to avoid this
● projection matrix of the light should be as tight as
possible

! Exponential shadow maps
✦ limit aliasing by assuming that a fragment which is in
the shadow, but near the light surface, is “somewhere
in the middle”
● related to the bias, but the test is not binary

Improvements

! Light-space perspective Shadow Maps
✦LiSPSM tweaks the light project matrix in order to get more
precision near the camera

! Cascaded shadow maps
✦CSM deals with the same problem as LiSPSM, but uses a
different approach
● uses several (2 to 4) standard shadow maps for different
parts of the view frustum

● has a good balance of complexity to quality

! Parallel-Split Shadow Maps

Improvements

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

Visualizing Shadow Mapping

source: Mark Killgard, NVIDIA, GDC, 2001

! Luxo Jr. has 2 animated lights and 1 overhead light
■ three shadow maps dynamically generated per
frame, complex geometry, done in OpenGL

Pixar: Luxo, Jr.

